ЛИМФАТИЧЕСКИЕ КАПИЛЛЯРЫ: ВОЗМОЖНО ЛИ ИХ ПРЯМОЕ СООБЩЕНИЕ С ИНТЕРСТИЦИАЛЬНЫМИ КАНАЛАМИ

Марков И.И., Кудряшова В.Н., Маркова В.И.

LYMPH CAPILLARIES: ARE THEY ABLE TO COMMUNICATE DIRECTLY WITH THE INTERSTITIAL CANALS?

MARKOV I.I., KUDRASHOVA V.N., MARKOVA V.I.

Научно - исследовательская лаборатория по проблемам морфологии (руководитель - профессор И. И. Марков) Медицинского университета «Реавиз».

Цель работы - получить информацию о структурной организации инициальных лимфатических капилляров.

Объект исследования- стенка тонкой кишки половозрелых беспородных собак.

Метод исследования — окраска парафиновых срезов толщиной 5-7 мкм гематоксилином и эозином, пирарозанилином и толуидиновым синим. Метод позволяет исключить артефакты, возможные при интрасосудистой импрегнации и внутритканевом введении красителей.

Результаты. Между гладкими миоцитами мышечной оболочки обнаружены лимфатические капилляры,по форме и диаметру резко отличающиеся от классических слепоначинающихся капилляров.

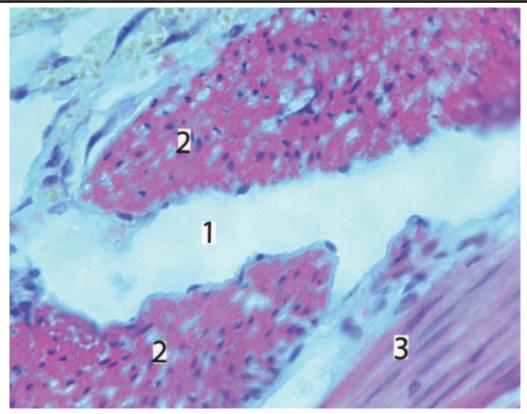
Ключевые слова: лимфатические капилляры, мышечная оболочка, тонкая кишка.

The goal of this paper is obtaining data on the structural arrangement of the initial lymph capillaries.

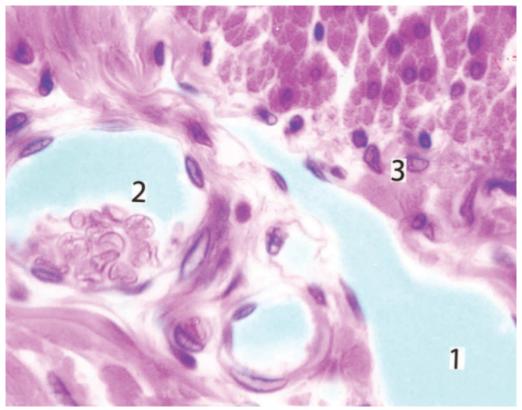
The object of this investigation is the small intestine wall of mature outbred dogs (n=5). The research method consists in staining 5-7 um thick paraffin sections with haematoxylin and eosin, with pararosaniline and toluidine blue.

This method allows to eliminate the artefacts that might occur during the intravessel impregnation and interstitial stain injection.

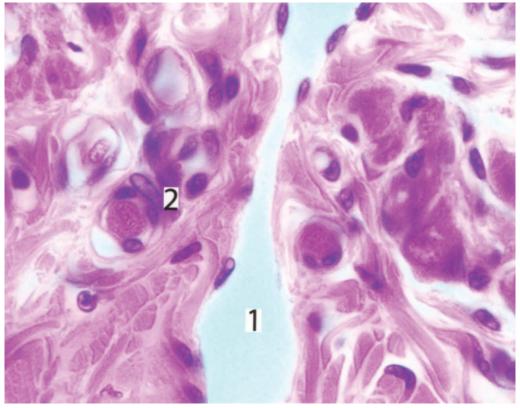
Results. Among smooth muscle cells some lymph capillaries have been found whose shape and diameter stand in marked contrast to conventional blind-ended capillaries.

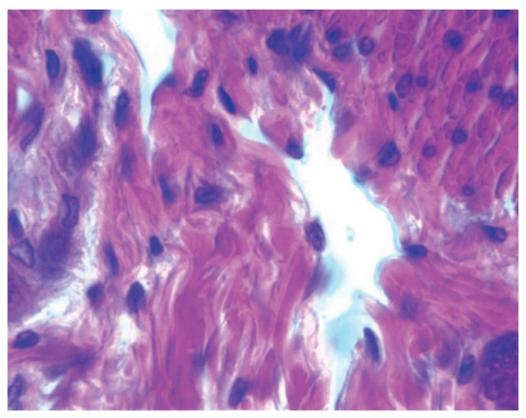

Key words: *lymph capillaries, muscular layer, small intestine.*

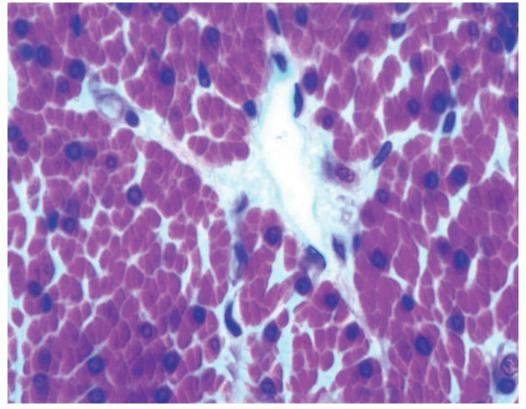
Введение. Корнями лимфатического русла стенки тонкой кишки позвоночных животных и человека являются начинающиеся слепо лимфатические капилляры слизистой, мышечной и


серозной оболочек [1]. Диаметр их варьирует от 25-30 мкм в кишечных ворсинках, до 140-200- мкм - в подслизистой основе[2]. Эти данные, полученные методом внутритканевой инъекции массы Герота, до настоящего времени признаются достоверными. Считается, что слепоначинающиеся капилляры входят в общий комплекс корней лимфатической системы [3, 4]. Они имеют различную форму [5]: 1) пальцеобразную; 2) булавовидную и 3) шаровидную и вместе с гемокапиллярами образуют структурно-функциональную единицу-модуль [4]. Авторы [5] высказывают свою, отличную от других [6, 7], точку зрения на происхождение слепоначинающихся капилляров, считая их «продуктом разрастания эндотелиальной стенки в сторону окружающей ткани». Разнообразие формы и широкий диапазон диаметра лимфатических капилляров зависит в значительной степени от состояния той соединительной ткани, где они залегают [6]. В рыхлой соединительной ткани они широкие, в плотной неоформленной-узкие. В зарубежной литературе для обозначения резорбирующих корней лимфатического русла используются термины: 1) начальные лимфатиксы [8] и 2) начальные лимфатические сосуды [9]. Однако механизм взаимодействия начальных лимфатиксов с интерстициальными каналами или «лимфатическими прекапиллярами» [10] до настоящего времени ещё полностью не раскрыт. В большинстве работ [4, 7, 10-14] речь идет о прелимфатических путях, соединяющих кровеносные и лимфатические микрососуды,как о единой системе ультрациркуляции [10], поскольку гематолимфатическое равновесие - необходимое условие микрогемоциркуляции [7]. Для его реализации на практике необходимы знания топографии микрососудистого русла, гистоструктуры стенок лимфокапилляров, данные о их отношениях друг с другом и с окружающими тканями, через которые осуществляется транспорт жидкости.

Цель исследования - получение информации о структурной организации инициальных лимфатических капилляров мышечной оболочки стенки тонкой кишки.


Материал и методы исследования.


Рис. 1. Лимфатический микрососуд (1) в мышечных «воротах» (2) стенки тонкой кишки(3) собаки. Окраска гематоксилином и эозином. Ув. 200.


Рис. 2. Лимфатический капилляр (1) в продольном слое(3) мышечной оболочки стенки тонкой кишки собаки 2) венула. Окраска пирарозанилином и толуидиновым синим. Ув. 900.

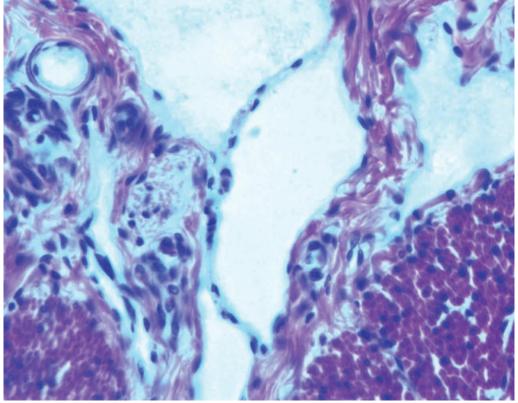

Рис. 3. Лимфатический капилляр(1) в продольном слое мышечной оболочки (2) стенки тонкой кишки собаки. Окраска пирарозанилином и толуидиновым синим. Ув. 900.

Рис. 4. Лимфатические капилляры в продольном слое мышечной оболочки тонкой кишки собаки. Окраска гематокислином и эозином. Ув. 900.

Рис. 5. Лимфатический капилляр в продольном слое мышечной оболочки тонкой кишки собаки. Окраска гематоксилином и эозином. Ув. 900.

Рис. 6. Эндотелиальная трабекула в просвете лимфатического капилляра в продольном мышечном слое тонкой кишки собаки. Окраска гематоксилином и эозином. Ув. 400.

Изучены серийные парафиновые срезы стенки тонкой кишки беспородных половозрелых собак (n=3). Толщина срезов - 4,0-5,0 мкм, окраска гематоксилином и эозином, парарозанилином и толуидиновым синим. Содержание животных и их эвтаназия - в соответствии с Директивой ЕС "О защите животных, используемых в экспериментальных и научных целях (86/609 СЕ)" и согласно соответствующему законодательству РФ.

Результаты исследования и их обсуждение. В мышечной оболочке стенки тонкой кишки каждый гладкий миоцит окружен базальной пластинкой и сетью ретикулиновых волокон [15]. Миоциты плотно упакованы, поскольку к узкой части одной веретенообразной клетки прилежат широкие части других клеток. Поэтому на поперечных срезах мышечной оболочки видны гладкие миоциты различных диаметров, а ядра определяются только в самых крупных из них. Наружный слой мышечной оболочки стенки тонкой кишки имеет продольное направление, а внутренний - циркулярное. Продольный слой по периметру кишки является не сплошным, а состоящим из отдельных сегментов. Их количество на различных препаратах варьирует от 8-ми до 16-ти, расстояние между отдельными сегментами -от 25-ти до 525-ти мкм, а протяженность сегментовот 320-ти до 1250-ти мкм. Отмечено смещение межсегментарных промежутков по периметру кишки по часовой стрелке, свидетельствующее о спиральном ходе продольного слоя мышечной оболочки. Так формируются мышечные «ворота», а точнее, мышечные туннели, через которые прямые артерии проникают в подслизистую основу, а прямые вены выходят из нее в брыжейку кишки. Отдельные мышечные туннели предназначены для выхода лимфатических сосудов (рис. 1). Продольный слой мышечной оболочки имеет толщину не более 250-350-ти мкм, что составляет 1/4-1/6 толщины циркулярного слоя. Продольный мышечный слой распределен по периметру кишки достаточно равномерно и может рассматриваться как мышечное кольцо с различным числом межсегментарных промежутков, заполненных сосудами (кровеносными и лимфатическими) проходящими в рыхлой соединительной ткани. У интактных животных они составляют от 1,98 до 4,77% от всей площади продольного слоя мышечной оболочки. Плотно упакованные группы гладких миоцитов мышечной оболочки отделены друг от друга прослойками рыхлой соединительной ткани, в которой не определяется ни коллаген, ни многие ее клеточные элементы. Таким образом, в продольном и циркулярном мышечных слоях формируются мышечные «пучки»,состоящие из различного числа гладких миоцитов. В рыхлой соединительной ткани, разделяющие эти «пучки»

распологаются кровеносные и лимфатические капилляры (рис. 2). Лимфатические капилляры продольного слоя мышечной оболочки на серийных срезах начинаются «слепыми» вырастами в соединительнотканной прослойке между «пучками» гладких миоцитов. Начальный диаметр лимфатических капилляров - 1,0-2,0 мкм, затем просвет их неравномерно увеличивается до 50,0-100,0 мкм (рис. 3). Стенка капилляров (ядра эндотелиоцитов и их цитоплазматические отростки) хорошо контурируются на фоне гладкой мышечной ткани. В одних случаях эндотелиальная стенка лимфатических капилляров на всем их протяжении нигде не прерыватся, хотя по ходу капилляра наблюдаются узкие слепые выпячивания между отдельными гладкими миоцитами (рис. 4). В других случаях единичные (рис. 3) или множественные интерстициальные каналы (рис. 5) расположенные между группами гладких миоцитов, открываются в просвет лимфатических капилляров. По мнению [16], лимфатические каналы являются продолжением интерстициальных пространств, расположенных в глубине тканей. Наличие в одних препаратах интерстициальных каналов, сообщающихся с лимфатическими капиллярами, в других их остутствие, вероятно, связано с функциональным состоянием различных сегментов кишки. В первом случае-это состояние локального спазма мышечной оболочки, во втором случае – снижение ее тонуса. Аналогичная структурная организация лимфатического капилляра, сообщающегося с интерстициальными каналами в мышечной оболочке тонкой кишки продемонстрирована на рис 11-1 [15]. Большая плотность интерстициальных каналов в мышечной оболочке тонкой кишки,а следовательно, и их большой суммарный просвет способны создать значительное сопротивление циркуляции интерстициальной жидкости [17]. В просвете лимфатических капилляров мышечной оболочки обнаружены эндотелиальные трабекулы, аналогичные контрактильным трабекулам, находящимся в просвете лимфатических микрососудов в подслизистой основе желудка и кишечника [18]. Одиночные трабекулы имеют две или три точки прикрепления к эндотелиальному пласту противоположных стенок лимфатических капилляров. Они, очевидно, и способны стабилизировать просвет лимфатических капилляров (рис. 6). Иную интерпретацию о эндолимфатических трабекулах дают авторы [5], которые считают их продуктом асептического воспаления, нарушающим лимфодинамику.

ЛИТЕРАТУРА:

1. Гусейнов Т.С. Сравнительная анатомия лимфатических капилляров стенки тонкой кишки позвоночных / Т.С. Гусейнов // В к.н.: «Лимфатический

- капилляр»Л., 1981, с. 16-28.
- 2. Ревазов В.С. Микротопографические взаимоотношения лимфатических капилляров с железами тонкой кишки / В.С. Ревазов // Арх. Анат., 1987,№5, с. 53-57.
- 3. Чернышенко Л.В. Морфология лимфоциркуляторного русла / Л.В. Чернышенко и др// Киев«ЗдоровЯ», 1985, 152 с.
- 4. Куприянов В.В. Микролимфология / В.В. Куприянов, Ю.М. Бородин и др // М.Медицина, 1983, 288с. 5. Сапин М.Р. Функциональная морфология слепых выростов и других растрастаний в капиллярном звене лимфатической системы / М.Р. Сапин, Г.Г.Аминова // Биол.эксп.биол., 2003, №2, с. 224-230.
- 6. Борисов А.В. Лимфатический капилляр его динамика и микроокружение / А.В. Борисов // В кН.: «Лимфатический капилляр» Л. 1981, с. 5-15. 7. Банин В.В. Механизм обмена внутренней среды / В.В. Банин // М. Издательство Р РГМУ, 2000, 278с. 8. Русньяк. И Физиология и патология лимфообращения / И. Русньяк, М. Фельди, Д. Сабо // Будапешт Изд-во АН, 1957,856с.
- 9. Berens V. Zur. Nomenklatur initialer lymphgefabe und ihrer Structurelemente bei Vertebraten / V.Berens, D.Rautenfeld etal. // Anat., Histol., Embri ol., Bd. 16, №4, S.357-362.
- 10. Casley-Smitt J.R. The structure and functi-oning of tissue channels and lymphatics / J.R. Casley-Smitt // lymphology, 1980, v. 13, № 4, p. 177-183.
- 11. Silberg A. Microcirculation and the extravascular space / A.Silberg // Bibe

- Anatomica, 1979, № 17, p. 54-55.
- 12. Hauck Y. Cappilary premeability and microlymph drainage / Y. Hauck // Vasa, 1994, v. 23, №2, p. 93-97.
 13. Hauck Y. The prelymphatic traninterstial pathway / Y. Hauck // Vasa, 1994, v. 23, №2, p. 93-97.
- 14. Черданцев А.И. Пути транспорта тканевой жидкости / А.И. Черданцев // Морфология, 1998, №2, с. 70-75.
- 15. Жункейра Л.К. Гистология. Учебное пособие. Атлас. / ЛК Жункейра Корнейро // пер. с англ. под ред. В.Л. Банкова М.Г. ОТАР-Медиа, 2009, 576с.
- 16. Wiederhielm CA Transcapillary and interstitial transport phenomena in mesentery / C.A. Wiederhielm // Fed. Proc., 1966, v. 25, p. 1789.
- 17. Джонсон П. Периферическое кровообращение / П.Джонсон // М.Иностр. лит. пер. с англ., 1982,475с.
- 18. Кошев В.И. Эндолимфососудистая контрактильная трабекулярная система / В.И. Кошев и др // М.2010, 193 с.

Авторская справка:

- 1.Марков Игорь Иванович-д.м.н., профессор. E-mail: markov.ii@hotmail.com
- 2. Кудряшова Валентина Николаевна аспирант кафедры морфологии и патологии Медицинского университета «Реавиз», 443001, Самара,ул. Чапаевская, 227; т. 8-846 -333-54-51
- 3. Маркова Валерия Игоревна ассистент кафедры морфологии и патологии Медицинского университета «Реавиз». т. 89277394823