RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

EXPERIMENTAL MODELS OF THE ATHEROSCLEROSIS ON RABBITS

https://doi.org/10.20340/mv-mn.2020.28(4):461

Abstract

Atherosclerosis is the main cause of cardiovascular diseases, which, despite a number of new advances in their diagnosis and treatment, still occupy a leading position. Experimental modeling of atherosclerosis in laboratory animals plays an important role in the study of the fundamental pathophysiological processes and pathology of atherosclerosis. Rabbits are among the most suitable animals for simulating atherosclerosis, as they are widely available, inexpensive to maintain, and easy to manipulate. The key advantage of rabbits over other animals is that their lipid metabolism is practically similar to that of humans. The aim of the study was to analyze literature data on experimental models of atherosclerosis in rabbits. The review shows that the history of the study of atherosclerosis by means of experimental models is very rich and originates from the works of the well-known Russian pathologists A.I. Ignatovsky, N.N. Anichkov, S.S. Khalatov (1908-1915), who developed a cholesterol model of the formation of atherosclerosis in rabbits. The principle of this model is to feed laboratory animals with food containing elevated levels of lipids and cholesterol. The composition of the cholesterol (atherogenic) diet may vary, determining the existence of modifications of this model. Most often, a diet with a cholesterol content of 0.3-0.5% is used, in cases where it is necessary to accelerate the development of atherosclerosis, a short-term use of a diet with a 1% cholesterol content is allowed. In addition to cholesterol, it is recommended to use vegetable oils (soybean, coconut or corn) in the atherogenic diet as they improve the absorption of cholesterol in the intestine. In 1980, Japanese researcher Y. Watanabe deduced a new model of atherosclerosis formation - on hereditarily determined hyperlipidemic rabbits Watanabe (WHHL-rabbits). WHHL rabbits contain a genetic mutation in the gene encoding low-density lipoprotein receptors, which results in these animals having high plasma cholesterol levels with a normal diet. Thanks to modern genetic technologies, various genetic models of atherosclerosis in rabbits have also been created: transgenic and “knocked out” rabbits. The main method for obtaining transgenic rabbits is pronuclear microinjection, which allows the introduction of a transgene (additional DNA fragment) into their genome. To date, using this technology, it has been possible to introduce more than a dozen genes responsible for lipid metabolism. The principle of creating knocked out rabbits consists in specific inactivation using genome editing technologies (ZFN, TALEN, CRISPR / Cas9) of a certain working gene. Experimental models of atherosclerosis in rabbits have not lost their significance and continue to be used to study the fundamental morphological (pathological) and pathological mechanisms underlying atherosclerosis, to search for new diagnostic biomarkers and potential targets for therapeutic effects, as well as to conduct preclinical trials of newly developed drugs.

About the Authors

Aleksey M. Chaulin
Samara State Medical University, Polyakov Samara Regional Clinical Cardiology Dispensary, Samara
Russian Federation
Postgraduate student of the Department of Histology and Embryology of the Samara State Medical University, Doctor of Clinical Laboratory Diagnostics of the Clinical Diagnostic Laboratory of the Polyakov Samara Regional Clinical Cardiological Dispensary
Competing Interests: The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study


Yulia V. Grigorieva
Samara State Medical University, Samara
Russian Federation
Candidate of Medical Sciences, Associate Professor of the Department of Histology and Embryology
Competing Interests: The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study


Galina N. Suvorova
Samara State Medical University, Samara
Russian Federation
Doctor of Biological Sciences, Professor, Head of the Department of Histology and Embryology
Competing Interests: The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study


Dmitry V. Duplyakov
Samara State Medical University, Polyakov Samara Regional Clinical Cardiology Dispensary, Samara
Russian Federation
Professor, Doctor of Medical Sciences, Professor of the Department of Cardiology and Cardiovascular Surgery of the Samara State Medical University, Deputy Chief of Medical Care of the Polyakov Samara Regional Clinical Cardiology Dispensary
Competing Interests: The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study


References

1. Aronov DM, Lupanov VP. Atherosclerosis and coronary heart disease: some aspects of pathogenesis. The Journal of Atherosclerosis and Dyslipidemias (JAD)-Ateroskleroz i dislipidemii. 2011;1-2:48-56. https://www.elibrary.ru/item.asp?id=15566121

2. Fatenkov OV, Simerzin VV, Panisheva YA, Galkina MA, Sytdykov IKh, Krasovskaya MA, Gagloev AV, Malykhina TV. Innovative treatments for patients with subclinical carotid atherosclerosis. Bulletin of Medical Institute “REAVIZ”: Rehabilitation, Physician and Health. 2019;2(38):129-137. https://www.elibrary.ru/item.asp?id=38163180

3. Sumin AN, Medvedeva YuD, Shcheglova AV, Barbarash LS. Predictors of unfavorable outcomes in patients with peripheral atherosclerosis. Russian Journal of Cardiology and Cardiovascular Surgery = Kardiologiya i serdechno-sosudistaya khirurgiya. 2020;13(1):41-47. DOI: 10.17116/kardio202013011141

4. Chaulin AM, Karslyan LS, Grigoriyeva EV, Nurbaltaeva DA, Duplyakov DV. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019;59(11):66-75. DOI:10.18087/cardio.2019.11.n414

5. Chaulin AM, Milyutin IN, Timofeev NV, Duplyakov DV. Non-coronarogenic causes of elevated cardiac troponins in clinical practice (literature review). Bulletin of Medical Institute “REAVIZ”: Rehabilitation, Physician and Health. 2019;5(41):201-214. URL:https://elibrary.ru/item.asp?id=41830941

6. Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2019;7(2):45-57. doi: 10.24411/2309-1908-2019-12005

7. Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2019;7(4):24-35. doi: 10.24411/2309-1908-2019-12005

8. Vesselinovitch D. Animal models and the study of atherosclerosis. Arch Pathol Lab Med. 1988;112(10):1011-1017. https://www.ncbi.nlm.nih.gov/pubmed/3052351.

9. Getz GS, Reardon CA. Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(5):1104-1115. doi: 10.1161/ATVBAHA.111.237693.

10. Moghadasian MH. Experimental atherosclerosis: a historical overview. Life Sci. 2002;70(8):855-865. DOI: 10.1016/s0024-3205(01)01479-5

11. Taylor JM, Fan J. Transgenic rabbit models for the study of atherosclerosis. Front Biosci. 1997;2:298-308. DOI: 10.2741/a192

12. Roberts DC, West CE, Redgrave TG, Smith JB. Plasma cholesterol concentration in normal and cholesterol-fed rabbits. Atherosclerosis. 1974;19(3):369-380. DOI: 10.1016/s0021-9150(74)80002-x

13. Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993;34(8):1255-1274. URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.2888&rep=rep1&type=pdf

14. Quinet E, Tall A, Ramakrishnan R, Rudel L. Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. J Clin Invest. 1991;87(5):1559-1566. doi:10.1172/JCI115169

15. Agellon LB, Walsh A, Hayek T, Moulin P, Jiang XC, Shelanski SA, Breslow JL, Tall AR. Reduced high density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J Biol Chem. 1991;266(17):10796-10801. https://www.jbc.org/content/266/17/10796.long

16. Li X, Catalina F, Grundy SM, Patel S. Method to measure apolipoprotein B-48 and B-100 secretion rates in an individual mouse: evidence for a very rapid turnover of VLDL and preferential removal of B-48- relative to B-100-containing lipoproteins. J Lipid Res. 1996;37(1):210-220. URL: https://www.ncbi.nlm.nih.gov/pubmed/8820116

17. Ignatowski AC. Influence of animal food on the organism of rabbits. Izvest Imper Voennomed Akad St Petersburg. 1908;16:154-173.

18. Anichkov NN. Vestnik Akademii Nauk SSSR. 1961, р. 38.

19. Buja LM. Nikolai N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovasc Pathol. 2014;23(3):183-184. doi: 10.1016/j.carpath.2013.12.004

20. Konstantinov IE, Mejevoi N, Anichkov NM. Nikolai N. Anichkov and his theory of atherosclerosis. Tex Heart Inst J. 2006;33(4):417-23. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764970/

21. Parfenova NS, Golikov Y.P., Klimov A.N. On the history of the emergence of the cholesterol model of atherosclerosis. Medical academic journal. 2016;16(2):7-14. doi: 10.17816/MAJ1627-14

22. Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J Lipid Res. 2004;45(9):1583-1593. DOI: 10.1194/jlr.R400003-JLR200

23. Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2019;7(2):45-57. doi: 10.24411/2309-1908-2019-12005

24. Manning P, Ringler D, Newcomer C. The biology of the laboratory rabbits, 2nd Ed Academic Press, San Diego, 1994. 483pp. URL: https://www.elsevier.com/books/the-biology-of-the-laboratory-rabbit/manning/978-0-12-469235-0

25. Fan J, Watanabe T. Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J Atheroscler Thromb. 2000;7(1):26-32. doi:10.5551/jat1994.7.26

26. Rouleau JL, Parmley WW, Stevens J, Wikman-Coffelt J, Sievers R, Mahley RW, Havel RJ. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits. J Am Coll Cardiol. 1983;1(6):1453-60. doi: 10.1016/s0735-1097(83)80049-7

27. Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K, Watanabe T. Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol. 2001;21(1):88-94. doi: 10.1161/01.atv.21.1.88

28. Liang J, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, Morimoto M, Hatakeyama K, Asada Y, Watanabe T, Sasaguri Y, Watanabe S, Fan J. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation. 2006;113(16):1993-2001. doi: 10.1161/CIRCULATIONAHA.105.596031.

29. Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Särkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991;88(12):5252-6. doi: 10.1073/pnas.88.12.5252

30. Hirata M, Watanabe T. Regression of atherosclerosis in normotensive and hypertensive rabbits. A quantitative analysis of cholesterol-induced aortic and coronary lesions with an image-processing system. Acta Pathol Jpn. 1988;38(5):559-575. URL: https://www.ncbi.nlm.nih.gov/pubmed/3213507

31. Kato H, Tokunaga O, Watanabe T, Sunaga T. Experimental cerebral atherosclerosis in the rabbit. Scanning electron microscopic study of the initial lesion site. Pathol Res Pract. 1991;187(7):797-805. DOI: 10.1016/S0344-0338(11)80575-3.

32. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis. 1980;36(2):261-268. DOI: 10.1016/0021-9150(80)90234-8.

33. Yamamoto T, Bishop RW, Brown MS, Goldstein JL, Russell DW. Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986;232(4755):1230-1237. doi:10.1126/science.3010466

34. Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med. 1983;309(5):288-296. DOI: 10.1056/NEJM198308043090507.

35. Chaulin AM, Aleksandrov AG, Aleksandrova OS, Duplyakov DV. The role of the proprotein convertase subtilisin / kexin type 9 (pcsk9) in the pathophysiology of atherosclerosis. Medicine in Kuzbass. 2019;18(4):5-15. URL: http://mednauki.ru/index.php/MK/article/view/359/728

36. Schrøder M, Fricke C, Pilegaard K, Poulsen M, Wester I, Lütjohann D, Mortensen A. Effect of rapeseed oil-derived plant sterol and stanol esters on atherosclerosis parameters in cholesterol-challenged heterozygous Watanabe heritable hyperlipidaemic rabbits. Br J Nutr. 2009;102(12):1740-1751. doi: 10.1017/S0007114509991206.

37. Kobayashi T, Ito T, Shiomi M. Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases. J Biomed Biotechnol. 2011;406473. doi: 10.1155/2011/406473.

38. Tevkin CI, Shishimorova MS. Production of transgenic rabbits producing biologically active recombinant human proteins (a review). Problems of Biology of Productive Animals. 2009;4:5-20. URL: https://elibrary.ru/item.asp?id=13001510

39. Peng X. Transgenic rabbit models for studying human cardiovascular diseases. Comp Med. 2012;62(6):472-479. URL: https://www.ncbi.nlm.nih.gov/pubmed/23561880

40. Mátés L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvák Z. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753-761. doi: 10.1038/ng.343

41. Ivics Z, Hiripi L, Hoffmann OI, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Bösze Z, Izsvák Z. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc. 2014;9(4):794-809. doi: 10.1038/nprot.2014.009

42. Querques I, Mades A, Zuliani C, Miskey C, Alb M, Grueso E, Machwirth M, Rausch T, Einsele H, Ivics Z, Hudecek M, Barabas O. A highly soluble Sleeping Beauty transposase improves control of gene insertion. Nat Biotechnol. 2019;37(12):1502-1512. doi: 10.1038/s41587-019-0291-z

43. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One. 2011;6(6):e21045. doi: 10.1371/journal.pone.0021045

44. Yang D, Zhang J, Xu J, Zhu T, Fan Y, Fan J, Chen YE. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. J Vis Exp. 2013;(81):e50957. doi: 10.3791/50957.

45. Song J, Zhong J, Guo X, Chen Y, Zou Q, Huang J, Li X, Zhang Q, Jiang Z, Tang C, Yang H, Liu T, Li P, Pei D, Lai L. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res. 2013;23(8):1059-1062. doi: 10.1038/cr.2013.85

46. Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J, Chen YE. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol. 2014;6(1):97-99. doi: 10.1093/jmcb/mjt047

47. Chaulin AM. The involvement proprotein convertase subtilisin/kexin of type 9 in the pathogenesis of atherosclerosis (literature review). University proceedings. Volga region. Medical sciences. 2020;1(53):111-128. DOI: 10.21685/2072-3032-2020-1-13


Supplementary files

The authors have shown that the experimental study of atherosclerosis on existing and new laboratory models using rabbits contributes to the expansion of the clinical possibilities of diagnosis, treatment and rehabilitation of patients with this widespread in the modern world pathology

Review

For citations:


Chaulin A.M., Grigorieva Yu.V., Suvorova G.N., Duplyakov D.V. EXPERIMENTAL MODELS OF THE ATHEROSCLEROSIS ON RABBITS. Morphological newsletter. 2020;28(4):78-87. (In Russ.) https://doi.org/10.20340/mv-mn.2020.28(4):461

Views: 714


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)