THE MORPHOLOGICAL BACKGROUND OF THE LEFT ATRIAL APPENDAGE THROMBOSIS (REVIEW)
https://doi.org/10.20340/mv-mn.2021.29(4).578
Abstract
The clinical significance of atrial fibrillation is largely associated with the risk of thromboembolic complications, which are most often caused by the formation of a thrombus in the left atrial appendage. The aim of the study was to systematize the data presented in the literature on the role of morphological features of the left atrial appendage in the development of atrial thrombosis and thromboembolic complications in patients with atrial fibrillation. Materials and research methods consisted of searching for articles in the RSCI and PubMed (MEDLINE) databases, using the following keywords: «left atrial appendage», «left atrial thrombosis», «epicardial fat», «atrial fibrillation». As a result of a meta-analysis of the literature, it was found that a number of studies have shown the likelihood of thrombus formation in the left atrial appendage and its anatomical features interrelated, in particular, the likelihood of thrombosis in the anatomical type of the left atrial appendage in the form of a «chicken wing» significantly lower than with other variants of its structure. However, the question of the reasons for the predominant formation of blood clots in the appendage of the left rather than right atrium remains unclear. One of the possible reasons may be the inherent endocrine function of the left atrial appendage, which is expressed in the secretion of a number of biologically active substances, in particular, natriuretic peptide. Another possible reason for the predominant formation of blood clots in the left atrial appendage may be its close contact with the atrial depot of epicardial fat, the excess of which plays an important role in the development of a number of cardiovascular diseases. The question of the morphological prerequisites for the development of thrombosis mainly in the left atrial appendage seems to be insufficiently studied. The study of this issue can improve the effectiveness of prevention of thromboembolic complications in atrial fibrillation.
About the Authors
Nikolay D. BazhenovRussian Federation
Candidate of Medical Sciences, Docent, Vice-rector of Medical Work, Assistant Professor of the Department of Hospital Therapy and Occupational Diseases
Competing Interests:
The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study
Evgeny S. Mazur
Russian Federation
Doctor of Medical Sciences, Professor, Head of the Department of Hospital Therapy and Occupational Diseases
Competing Interests:
The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study
Vera V. Mazur
Russian Federation
Doctor of Medical Sciences, Docent, Professor of the Department of Hospital Therapy and Occupational Diseases
Competing Interests:
The author declares that she did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study
Oksana V. Nilova
Russian Federation
Candidate of Medical Sciences, Associate Professor of the Department of Polyclinic Therapy and Family Medicine
Competing Interests:
The author declares that she did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study
References
1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissella BM, Knutson LK. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019;139:e56—e528. DOI: 10.1161/CIR.0000000000000659.
2. Pisters R, Lane DA, Marin F, Camm AJ, Lip GY. Stroke and thromboembolism in atrial fibrillation. Circ J 2012;76:2289-2304. DOI: 10.1253/circj.cj-12-1036.
3. Kirchhof P, Auricchio A, Bax J, Crijns H, Camm J, Diener H-Ch, Goette A, Hindricks G, Hofnloser S, Kappenberger L, Kuck K-H, Lip GYH, Olsson B, Meinertz T, Priori S, Ravens U, Steinbeck G, Svernhage E, Tijssen J, Vincent A, Breithardt G. Outcome parameters for trials in atrial fibrillation: executive summary. Recommendations from a consensus conference organized by the German Atrial Fibrillation Competence NETwork (AFNET) and the European Heart Rhythm Association (EHRA). Eur Heart J 2007; 28: 2803–2817. DOI: 10.1093/europace/eum191.
4. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/ Paisley study. Am J Med 2002; 113: 359–364. DOI: 10.1016/s0002-9343(02)01236-6.
5. Stewart S, Murphy N, Walker A, McGuire A, McMurray JJV. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart 2004;90: 286–292. DOI: 10.1136/heart.89.8.848.
6. Kim MH, Johnston SS, Chu BC, Dalal MR, Schulman KL. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ Cardiovasc Qual Outcomes 2011;4:313–320. DOI: 10.1161/CIRCOUTCOMES.110.958165.
7. Cresti A, García-Fernández MA, Sievert H, Mazzone P, Baratta P, Solari M, Geyer A, De Sensi F, Limbruno U. Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: A large Transeophageal Echo study. EuroIntervention 2019;17:e225–e230. DOI: 10.4244/EIJ-D-19-00128.
8. Cresti A, Garcia-Fernandez MA, De Sensi F, Miracapillo G, Picchi A, Scalese3 M, Severi S. Prevalence of auricular thrombosis before atrial flutter cardioversion: a 17-year transoesophageal echocardiographic study. Europace 2016; 18: 450–456. DOI:10.1093/europace/euv128
9. Patti G, Pengo V, Marcucci R, Cirillo P, Renda G, Santilli F, Calabro P, De Caterina AR, Cavallari I, Ricottini E, Parato VM, Zoppellaro G, Do Gioia G, Sedati P, Cicchitti V, Davi G, Golia E, Parrigiano I, Simeone P, Abbate R, Prisco D, Zimarino M, Sofi F, Andreotti F, De Caterina R. The left atrial appendage: from embryology to prevention of thromboembolism. Eur Heart J 2017;38:877–887. DOI: 10.1093/eurheartj/ehw159.
10. Goldman МЕ, Pearce LA, Hart RG, Zabalgoitia M, Asinger RW, Safford R, Halperin JL. Pathophysiologic Correlates of Thromboembolism in Nonvalvular Atrial Fibrillation: I. Reduced Flow Velocity in the Left Atrial Appendage (The Stroke Prevention in Atrial Fibrillation [SPAF-III] Study). Journal of American Society of Echocardiography. 1999;12:1080-7. DOI: 10.1016/s0894-7317(99)70105-7.
11. Zateyshchikov DA, Brovkin AN, Chistiakov DA, Nosikov VV. Advanced age, low left atrial appendage velocity, and Factor V promoter sequence variation as predictors of left atrial thrombosis in patients with nonvalvular atrial fibrillation. Journal of Thrombosis and Thrombolysis. 2010;30:192-199. DOI:10.1007/s11239-010-0440-1.
12. Beigel R, Wunderlich NC, Ho SY, Arsanjani R, Siegel RJ. The Left Atrial Appendage: Anatomy, Function, and Noninvasive Evaluation. Journal of American College of Cardiology: Cardiovascular Imaging. 2014; 7(12):1251-65. DOI:10.1016/j.jcmg.2014.08.009.
13. Golukhova EZ, Gromova OI, Arakelyan MG, Bulaeva NI, Zholbaeva AZ, Mashina TV, Dzhanketova VS, Shlyappo MA. Risk factors of left atrial thrombus and/or thromboembolism in patients with nonvalvular, nonishemic atrial fibrillation. Kreativnaya Kardiologiya (Creative Cardiology). 2017;11(3):262-72 (in Russ.). DOI: 10.24022/1997-3187-2017-11-3-262-272.
14. Biase LD, Santangeli P, Anselmino M, Mohanty P, Salvetti I, MD, Gili S, Horton R, Sanchez JE, Bai R, Mohanty S, Pump A, Brantes MC, Gallinghouse GJ, Burkhardt D, Cesarani F, Scaglione M, Natale A, Gaita F. Does the Left Atrial Appendage Morphology Correlate With the Risk of Stroke in Patients With Atrial Fibrillation? Results From a Multicenter Study. J Am Coll Cardiol 2012; 60: 531–8. DOI:10.1016/j.jacc.2012.04.032.
15. Lupercio F, Ruiz JC, Briceno DF, Romeno J, Villablanca PA, Berardi C, Faillace R, Krumerman A. Left Atrial Appendage Morphology Assessment for Risk Stratification of Embolic Stroke in Patients with Atrial Fibrillation. A Meta-Analysis. Heart Rhythm. 2016;13(7):1402-9. DOI:10.1016/j.hrthm.2016.03.042.
16. Petersen M, Roehrich A, Balzer J, Chin D-I, Meyer K, Kelm M, Kehmeier EC. Left atrial appendage morphology is closely associated with specific echocardiographic flow pattern in patients with atrial fibrillation. Europace. 2015;17:539-545. DOI:10.1093/europace/euu347.
17. Fukushima K, Fukushima N, Kato K, Ejima K, Sato H, Fukushima K, Saito Ch, Hayashi K, Manaka T, Ashihara K, Shoga M, Hagiwara N. Correlation between left atrial appendage morphology and flow velocity in patients with paroxysmal atrial fibrillation. European Heart Journal - Cardiovascular Imaging. 2016;17:59-66. DOI:10.1093/ehjci/jev117.
18. Lee Y, Park HC, Lee Y, Kim SG. Comparison of Morphologic Features and Flow Velocity of the Left Atrial Appendage Among Patients With Atrial Fibrillation Alone, Transient Ischemic Attack, and Cardioembolic Stroke. American Journal of Cardiology. 2017;119(10):1596-1604. DOI:10.1016/j.amjcard.2017.02.016.
19. Lee JM, Seo J, Uhm JS, Kim YJ, Lee H-J, Kim J-Y, Sung J-H, Pak H-N, Lee M-H, Joung B. Why Is Left Atrial Appendage Morphology Related to Strokes? An Analysis of the Flow Velocity and Orifice Size of the Left Atrial Appendage. Journal of Cardiovascular Electrophysiology. 2015;26(9):922-927. DOI:10.1111/jce.12710.
20. He J, Fu Z, Yang L, Liu W, Yian Y, Liu Q. The predictive value of a concise classification of left atrial appendage morphology to thrombosis in nonvalvular atrial fibrillation patients. Clin Cardiol 2020;43(7): 789–795. DOI: 10/1002/clc.23381.
21. Yang HL, Lin Y-P, Long Y, Ma Q-L, Zhou Ch. Predicting cardioembolic stroke with the B-type natriuretic peptide test: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2014;23(7):1882—1889. DOI: 10.1016/j.jstrokecerebrovasdis.2014.02.014.
22. Pant R., Patel M., Garcia-Sayan E., Wassouf M., D’Silva O., Kehoe R.F., Doukky R. Impact of B-type natriuretic peptide level on the risk of left atrial appendage thrombus in patients with nonvalvular atrial fibrillation: a prospective study. Cardiovasc Ultrasound. 2015;14:4. doi: 10.1186/s12947-016-0047-6.
23. Patti G, Pengo V, Marcucci R, . The left atrial appendage: from embryology to prevention of thromboembolism. European Heart Journal 2017;38:877–887. DOI:10.1093/eurheartj/ehw159.
24. Zaigrayev IA, Yavelov IS. Tromboz levogo predserdiya i/ili yego ushka pri neklapannoy fibrillyatsii predserdiy: ekhokardiograficheskiye i laboratornyye faktory riska, vozmozhnosti prognozirovaniya i korrektsii. Aterotromboz 2020;1:56–70. DOI: 10.21518/2307-1109-2020-1-56-70.
25. Kumagai K, Fukuchi M, Ohta J, Baba S, Oda K, Akimoto H, Kagaya Y, Watanabe J, Tabayashi K, Shirato K. Expression of the von Willebrand factor in atrial endocardium is increased in atrial fibrillation depending on the extent of structural remodeling. Circ J 2004;68:321–327. DOI: 10/1177/1076029607305115.
26. Yao Y, Shang M-Sh, Gao L-J, Zhao JH, Yang XH, Liu T. Elevated homocysteine increases the risk of left atrial/left atrial appendage thrombus in non-valvular atrial fibrillation with low CHA2DS2-VASc score. Europace. 2018;20(7):1093–1098. DOI: 10.1093/europace/eux189.
27. Herrmann M, Whiting MJ, Veillard AS, Ehnholm C, Sullivan DR, Keech AC. Plasma homocysteine and the risk of venous thromboembolism: insights from the FIELD study. Clin Chem Lab Med. 2012;50(12):2213–2219. DOI: 10.1515/cclm-2012-0078.
28. Xia W, Wang Y, Duan T, Rong Y, Chi Y, ShaoY. Asymmetric dimethylarginine predicts left atrial appendage thrombus in patients with non-valvular atrial fibrillation. Thromb Res. 2015; 136(6):1156–1159. DOI: 10.1016/j.thromres.2015.10.021.
29. Cengel A, Sahinarslan A, Biberoğlu G. Asymmetrical dimethylarginine level in atrial fibrillation. Acta Cardiol 2008;63(1):33–37. DOI: 10/1097/MCA.0b013e328311d32b.
30. Chao TF, Lu TM, Lin YJ, Tsao H.-M., Chang S.-L., Lo L.-W. Plasma asymmetric dimethylarginine and adverse events in patients with atrial fibrillation referred for coronary angiogram. PLoS One 2013;8(8)e71675. DOI: 10.1371/journal.pone.0071675.
31. Masawa N, Yoshida Y, Joshita T, Ooneda G. Diagnosis of cardiac thrombosis in patients with atrial fibrillation in the absence of macroscopically visible thrombi. Virchows Arch A Pathol Anat Histopathol 1993;422:67–71. DOI: 10/1007/BF01605135.
32. Tsao HM, Hu WC, Wu MH, Tsao H.-M., Chang S.-L., Lo L.-W. Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation. Am J Cardiol. 2011;107:1498–1503. DOI: 10/1016/j.amjcard.2011.01.027.
33. Leo LA, Paiocchi VL, Schlossbauer SA. The intrusive nature of epicardial adipose tissue as revealed by cardiac magnetic resonance. Journal of Cardiovascular Echography. 2019;29(2):45–51. DOI: 10.4103/jcecho.jcecho_22_19.
34. Vyas V, Lambiase P. Obesity and atrial fibrillation: epidemiology, pathophysiology and novel therapeutic opportunities. Arrhythmia and Electrophysiology Review. 2019;8(1):28–36. DOI:10.15420/aer.2018.76.2.
35. Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. European Heart Journal. 2017;38:1294–1302. DOI:10.1093/eurheartj/ehw045.
36. Druzhilov МА, Kuznetsova ТYu. Obesity associated atrial fibrillation: epicardial fat tissue in etiopathogenesis. Russ J Cardiol. 2017;7(147):178–184. (In Russ). DOI: 10.15829/1560-4071-2017-7-178-184.
37. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71:2360–2372. DOI: 10.1016/j.jacc.2018.03.509.
38. Zhou M, Wang H, Chen J, Zhao L. Epicardial adipose tissue and atrial fibrillation: possible mechanisms, potential therapies, and future directions. Pacing Clin Electrophysiol. 2020;43:133–145. DOI: 10.1111/pace.13825.
39. Leo LA, Paiocchi VL, Schlossbauer SA, et al. The intrusive nature of epicardial adipose tissue as revealed by cardiac magnetic resonance. Journal of Cardiovascular Echography. 2019;29(2):45–51. DOI: 10.4103/jcecho.jcecho_22_19.
40. Lim HE, Na NO, Im SI. Interatrial septal thickness as a marker of structural and functional remodeling of the left atrium in patients with atrial fibrillation. Korean J Intern Med. 2015;30:808-820 DOI: 10.3904/kjim.2015.30.6.808
41. Özer S, Şahin M, Kutlu M. Relationship between Epicardial Fat Thickness and Cardioversion Success in Patients with Atrial Fibrillation. Sakarya Med J. 2019;9(1):125-130. DOI: 10.31832/smj.486781.
42. Gaeta M, Bandera F, Tassinari F. Is epicardial fat depot associated with atrial fibrillation? A systematic review and metaanalysis. Europace. 2017;19:747–752. DOI:10.1093/europace/euw398.
43. Iacobellis G, Zaki M, Garcia D, et al. Epicardial Fat in Atrial Fibrillation and Heart Failure. Horm Metab Res. 2014;46:1–4. DOI:10.1055/s-0034-1367078.
44. Shamloo AS, Dagres N, Dinov B, et al. Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? A systematic review and meta-analysis. IJC Heart & Vasculature. 2019;22: 132–138. DOI:10.1016/j.ijcha.2019.01.003.
45. Chao T-F, Hung C-L, Tsao H-M. Epicardial adipose tissue thickness and ablation outcome of atrial fibrillation. PLoS ONE. 2013;8:e74926. DOI:10.1371/journal.pone.0074926.
46. Cosansu K, Yilmas S. Is epicardial fat thickness associated with acute ischemic stroke in patients with atrial fibrillation? Journal of stroke and cerebrovascular disease. 2020; 9(7). DOI: 10.1016/j.strokecerebrovasdis.2020.104900.
47. Tsao HM, Hu WC, Tsai PH. The abundance of epicardial adipose tissue surrounding left atrium is associated with the occurrence of stroke in patients with atrial fibrillation. Medicine. 2016; 95(14): 1–8. DOI:10.1097/MD.0000000000003260.
After analyzing the modern scientific literature, the authors came to the conclusion that the likelihood of thrombus formation in the left atrial appendage is significantly related to its anatomical features, and a detailed study of this phenomenon can increase the effectiveness of the prevention of thromboembolic complications at atrial fibrillation
Review
For citations:
Bazhenov N.D., Mazur E.S., Mazur V.V., Nilova O.V. THE MORPHOLOGICAL BACKGROUND OF THE LEFT ATRIAL APPENDAGE THROMBOSIS (REVIEW). Morphological newsletter. 2021;29(4):70-77. (In Russ.) https://doi.org/10.20340/mv-mn.2021.29(4).578