RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

MODERN METHODS OF THE BONE TISSUE DEFECT RESTORATION IN DENTAL PRACTICES

https://doi.org/10.20340/mv-mn.2022.30(1).598

Abstract

Restoration of jaw bone defects is an actual problem in modern dentistry. Currently, various materials of biological and synthetic origin are used. The gold standard is an auto graft, however, the limited volume, additional trauma limited the use of this material. Tissue engineering opens up wide prospects for the restoration of bone tissue defects. Despite the results achieved in the use of cellular technologies, the issues of fixing the cell culture during the operation in the area of ​​the defect, as well as limiting the probability of cell migration throughout the body in the postoperative period, remain unresolved. The purpose of the scientific review is a meta-analysis of published studies on modern methods of restoring bone defects in dental practice. The review shows that one of the solutions to this problem is the use of cells placed on carriers based on natural polymers. One of the representatives of these materials is collagen, which is a fibrillary protein that provides strength and elasticity to the connective tissue. Collagen has biocompatibility, high adhesion, loose structure, which allows it to be used in combination with various materials. Cellular technologies have opened wide prospects in the creation of new materials for bone grafting. Embryonic stem cells, which have an almost unlimited potential for proliferation, have been actively studied. However, the likelihood of developing malignant tumors, immunological incompatibility, and ethical issues limit their use. In this regard, there is a need to develop methods based on the use of cells with directed differentiation. Under the guidance of Professor Alla Zaydman developed a three-dimensional tissue-engineered bone graft obtained by direct differentiation from a chondrograft in an osteogenic environment. The three-dimensional tissue-engineered bone graft formed in vitro does not cause an immunological reaction of the body, it is an osteogenic tissue that has high regenerative potencies, which allows restoring bone defects in a short time.

About the Authors

Ol'ga S. Kosareva
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Assistant of the Department of Orthopedic Dentistry


Competing Interests:

The author declares that she did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study



Mikhail N. Drovosekov
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Doctor of Medical Sciences, Dean of the Faculty of Dentistry, Head of the Department of Surgical Dentistry, Dental Implantation and Maxillofacial Surgeon


Competing Interests:

The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study



Nina A. Ivanova
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Candidate of Medical Sciences, Docent, Head of the Department of Orthopedic Dentistry


Competing Interests:

The author declares that she did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study



Sergey V. Ostapets
Novosibirsk State Medical University, Novosibirsk
Russian Federation

Assistant of the Department of Surgical Dentistry, Dental Implantation and Maxillofacial Surgeons


Competing Interests:

The author declares that he did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study



Alla M. Zaydman
Tsivy’an Novosibirsk Research Institute of Traumatology and Orthopedics, Novosibirsk
Russian Federation

Doctor of Medical Sciences, Professor, Honored Employee of Science of Russian Federation


Competing Interests:

The author declares that she did not have any conflicts of interest in the planning, implementation, financing and use of the results of this study



References

1. Ivanov SYu, Mukhametshin RF, Muraev AA i dr. Sinteticheskie materialy, ispol'zuemye v stomatologii dlya zameshcheniya defektov kostnoy tkani. Sovremennye problemy nauki i obrazovaniya. 2013;1. URL: http://www.science-education.ru/ru/article/view?id=8345. In Russian

2. Shchetinin SA. Analiz chastoty i posledstviya travmatizma. Sovremennye problemy nauki i obrazovaniya. 2015;2-1. URL: http://www.science-education.ru/ru/article/view?id=17871. In Russian

3. Bajtus NA. Sinteticheskie osteoplasticheskie preparaty na osnove gidrosiapatita v stomatologii. Vestnik VGMU. 2014;13(3):29-33. In Russian

4. Sergeeva NS, Komlev VS, Sviridova IK i dr. Nekotorye fiziko-khimicheskie i biologicheskie kharakteristiki trekhmernykh konstruktsiy na osnove al'ginata natriya i fosfatov kal'tsiya, poluchennykh metodom 3D-pechati i prednaznachennykh dlya rekonstruktsii kostnykh defektov. Geny i kletki. 2015;10(2):39-45. In Russian

5. Dzhanibekova RN, Shakirov MN, Gafarov KhO, Mangutov IKh. Ispol'zovanie granul nikelid titana pri ustranenii postosteomieliticheskikh defektov nizhney chelyusti.- V kn.: Materialy konferentsii: biosovmestimye materialy i novye tehknologii v stomatologii, Kazan', 27-28 noyabrya 2014 g. Kazan’, 2014. S. 35-36. In Russian

6. Shaykhaliev AI, Krasnov MS, Karasenkov YaN. Ispol'zovanie novykh biokompozitnykh materialov na osnove nekollagenovykh belkov, vliayushchikh na osteoreparativny process v chelyustno-litsevoy khirurgii i travmatologii. Klinicheskiy primer. Rossijskiy stomatologichesky zhurnal. 2014;2:43-45. In Russian

7. Kazakova VS, Novikov OO, Zhilyakova ET. Perspektivy ispol'zovaniya faktorov rosta v vosstanovlenii kostnoy tkani. Nauchnye rezul'taty biomedicinskikh issledovany. Seriya Meditsina I Pharmatsiya. 2015;3:151-157. In Russian

8. Anitua E, Andia I, Sanchez M et al. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J. Orthop. Res. 2005;23(2):281-286

9. Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005;6:699-708. DOI: 10.1038/nbt1102

10. Lyundup AV, Medvedev YuA, Balasanova KV. Metody tkanevoy inzhenerii kostnoy tkani v chelyustno-litsevoy khirurgii. Aktual'nye voprosy kletochnoy transplantologii i tkanevoy inzhenerii. 2013;5:10-15. In Russian

11. Amoabediny Gh, Salehi-Nik N, Heli B. The role of biodegradable engineered scaffold in tissue engineering. In: Biomaterials Science and Engineering. Ed. by Pignatello R. Rijeka: In Tech, 2011. P. 153-172

12. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180-192

13. Hong D, Chen HX, Ge R, Li JC. Genetically engineered mesenchymal stem cells: The ongoing research for bone tissue engineering. Anat. Rec. 2010;293(3):531-537

14. Goepfert C, Slobodianski A, Schilling AF et al. Cartilage engineering from mesenchymal stem cells. Adv. Biochem. Eng. Biotechnol. 2010;123:163-200

15. Peppo de GM, Sjovall P, Lennerås M et al. Osteogenic potential of human mesenchymal stem cells and human embryonic stem cell-derived mesodermal progenitors: a tissue engineering perspective. Tissue Eng. Part. A. 2010;16(11):3413-3426

16. Kuznetsova DS, Timashev PS, Bagratashvili VN, Zagaynova EV. Kostnye implantaty na osnove skaffoldov i kletochnykh sistem v tkanevoy inzhenerii. STM. 2014;6(4):201-209. In Russian

17. Pieri F, Lucarelli E, Corinaldesi G et al. Effect of mesenchymal stem cells and plateletrich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J. Oral Maxillofac. Surg. 2009;67(2):265-272

18. Lee SY, Miwa M, Sakai Y et al. In vitro multipotentiality and characterization of human unfractured traumatic hemarthrosis-derived progenitor cells: A potential cell source for tissue repair. J. Cell. Physiol. 2007;210(3):561-566

19. Tapp H, Hanley ENJr, Patt JC, Gruber HE. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp. Biol. Med. 2009;234(1):1-9

20. Shoji T, Ii M, Mifune Y et al. Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Lab. Invest. 2010;90(4):637-649

21. Alekseeva IS, Volkov AV. Kliniko-eksperimental'noe obosnovanie ispol'zovaniya kombinirovannogo kletochnogo transplantata na osnove mul'tipotentnykh mezenkhiml'nykh stromal'nykh kletok zhirovoy tkani u patsientov s vyrazhennym defitsitom kostnoy tkani cheljusti. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2012;7:97-105. In Russian

22. Yamasaki T, Deie M, Shinomiya R et al. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J. Biomed. Mater. 2005;75(1):23-30

23. Stella JA, D*Amore A, Wagner WR, Sacks MS. On the biomechanical function of scaffolds for engineering load bearing soft tissues. Acta Biomater 2010;6(7):2365-2381. DOI: 10.1016/j.actbio.2010.01.001

24. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon`s point of view. J. Cell Mol Med. 2006;10(1):7-19

25. Ragimova TM. Struktura desny i periodonta pri lechenii ostrogo gnoynogo periostita chelyusti odontogennogo geneza s primeneniem fibrinovogo sgustka. Diss. kand. med. nauk.- Novosibirsk, 2009.- 171s. In Russian

26. Timashev Peter, Kuznetsova Darya, Koroleva Daria et al. Novel biodegradable star-shaped pol-ylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine. 2016;11(9). DOI: 10.2217/nnm-2015-0022

27. Shumilova AA, Shishatskaya EI. Materials for Restoration of Bone Tissue Journal of Siberian Federal University. Biology. 2014;2:213. In Russian

28. Gurin AN, Komlev VS, Fedotov AYu I dr. Sravnitel'naya kharakteristika materialov na osnove khitozana, al'ginata i fibrina v komplekse s Vtrikal'ciyfosfatom dlya osteoplastiki. Stomatologiya. 2014;1:4-9. In Russian

29. Grimm WD, Dannan A, Giesenhagen B et al. Translational Research: Palatal-derived Ectomesenchymal Stem Cells from Human Palate: A New Hope for Alveolar Bone and Cranio-Facial Bone Reconstruction. 2014 May;7(1):23-29. DOI: 10.15283/ijsc.2014.7.1.23

30. Tomar GB, Srivastava RK, Gupta N et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393(3):377-383

31. Niemeyer P, Szalay K, Luginbühl R et al. Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomater. 2010;6(3):900-908

32. Yamada Y, Nakamura S, Ito K et al. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng. 2010;16(6):1891-1900

33. Laino G, Graziano A, d'Aquino R et al. An approachable human adult stem cell source for hard-tissue engineering. J. Cell. Physiol. 2006;206(3):693-701

34. Giannoudis P.V. Dinopoulos H., Tsiridis E. Bone substitutes: an update. Injury. 2005Nov;36(Suppl 3):20-27. DOI: 10.1016/j.injury.2005.07.029

35. Zajdman AM, Sadovoy MA, Korel' AV I dr. Sposob vosstanovleniya defekta kostnoy tkani. Patent RU № 2580754 10.04.2016 Byul. № 10 A61B 17/58 po zayavke № 2015106506 ot 25.02.2015. In Russian

36. Zaydman AM, Kosareva OS, Shchelkunova EI i dr. Eksperimental'noe obosnovanie primeneniya trekhmernogo osteotransplantata dlya regeneratsii tkani razlichnoy lokalizatsii i gistogeneza. Sovremennye problemy nauki i obrazovaniya. 2016;6:41-51. In Russian

37. Zaydman AM, Predein YuA, Korel' AV i dr. Osobennosti regeneratsii kostnoy tkani tel pozvonkov na osnove osteotransplantata v eksperimente. Kompleksnye problemy serdechno-sosudistykh zabolevaniy. 2017;6(4):95-102. In Russian

38. Zaydman AM, Ivanova NA, Kosareva OS, Sukhikh AV. Regeneratsiya kostnoy tkani nizhney chelyusti metodom tkanevoy inzhenerii. Sovremennye problemy nauki i obrazovaniya. 2015;5:119-125. In Russian

39. Sukhikh AV, Zalavina SV, Zaydman AM i dr. Strukturnaya perestroyka limfaticheskikh uzlov pri zameshchenii defekta nizhney chelyusti kostnozameshchayushchim materialom (eksperimental'noe issledovanie). Vestnik KRSU. 2018;18(6):197-200. In Russian

40. Zaydman AM, Korel AV, Shevchenko AI et al. Osteograft, plastic material for regenerative medicine. AIP Conference Proceedings. 2016;1760(1). DOI: 10.1063/1.4960290


Supplementary files

The scientific review analyzes studies on modern methods of restoring bone defects in dental practice

Review

For citations:


Kosareva O.S., Drovosekov M.N., Ivanova N.A., Ostapets S.V., Zaydman A.M. MODERN METHODS OF THE BONE TISSUE DEFECT RESTORATION IN DENTAL PRACTICES. Morphological newsletter. 2022;30(1):63-70. (In Russ.) https://doi.org/10.20340/mv-mn.2022.30(1).598

Views: 270


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)