РОССИЙСКИЙ НАЦИОНАЛЬНЫЙ НАУЧНЫЙ АНАТОМИЧЕСКИЙ ЖУРНАЛ

Preview

Морфологические ведомости

Расширенный поиск

МОРФОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОДКОЖНЫХ КСЕНОГРАФТОВ ГЛИОБЛАСТОМЫ ЧЕЛОВЕКА U-87 MG ПОСЛЕ ЛОКАЛЬНОГО ОБЛУЧЕНИЯ ЭПИТЕПЛОВЫМИ НЕЙТРОНАМИ

https://doi.org/10.20340/mv-mn.2024.32(1).856

Аннотация

В настоящее время для лечения злокачественных опухолей все чаще используется бор-нейтронозахватная терапия. Этот метод эффективен в отношении радиорезистентных опухолей и новообразований, плохо поддающихся традиционным методам лечения, однако вопрос повышения его результативности остается высоко актуальным. Цель исследования – изучить структуру подкожных ксенографтов глиобластомы человека U-87 MG после локального облучения эпитепловыми нейтронами и/или на фоне введения борсодержащих веществ боркаптата и борфенилаланина. Использовали 60 иммунодефицитных мышей линии SCID с гетеротопическими ксенографтами клеток глиобластомы человека U-87 MG. Установлено, что после проведенной терапии во всех группах животных к 7-м суткам наблюдалось снижение массы опухоли по сравнению с контрольной группой, к 14 суткам этот показатель был также несколько ниже и только сочетанное введение боркаптата и борфенилаланина с последующим облучением приводило к достоверному снижению этого показателя на 31% (p<0,01). Объемы опухолевого узла к 7 суткам были выше по сравнению с начальными показателями в 2 раза, к 14 суткам рост объемов опухоли снижался в среднем в 1,25 раза во всех исследованных группах. Наиболее заметные морфологические изменения по сравнению с не леченными животными отмечены в группе животных, получавшей оба препарата бора с последующим облучением эпитепловыми нейтронами. У них отмечалось снижение пролиферативной активности опухолевых клеток и количества кровеносных сосудов, очаги некроза были мельче, как и опухолевые узлы в целом. Полученные данные свидетельствуют о том, что использованные методы лечения животных вызывают терапевтический патоморфоз, но не способны полностью остановить рост опухоли. Наиболее выраженный эффект, полученный в случае применения двух препаратов в сочетании с последующим облучением эпитепловыми нейтронами, косвенно указывает на возможный их синергический эффект, скорее всего обусловленный повышением суммарной дозы бора в опухолевых клетках.

Об авторах

Владимир Владимирович Каныгин
Институт ядерной физики имени Г.И. Будкера Сибирского отделения РАН, Новосибирский национальный исследовательский государственный университет, Новосибирск
Россия

кандидат медицинских наук, доцент, старший научный сотрудник Института ядерной физики имени Г.И. Будкера Сибирского отделения РАН; заведующий лабораторией ядерной и инновационной медицины, доцент кафедры физики элементарных частиц Новосибирского национального исследовательского государственного университета


Конфликт интересов:

Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования



Елена Владимировна Колдышева
Федеральный исследовательский центр фундаментальной и трансляционной медицины, Новосибирский национальный исследовательский государственный университет, Новосибирск
Россия

доктор биологических наук, главный научный сотрудник, руководитель лаборатории молекулярных механизмов патологических процессов Федерального исследовательского центра фундаментальной и трансляционной медицины; старший научный сотрудник лаборатории ядерной и инновационной медицины Новосибирского национального исследовательского государственного университета


Конфликт интересов:

Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования



Евгений Леонидович Завьялов
Институт цитологии и генетики Сибирского отделения РАН, Новосибирский национальный исследовательский государственный университет, Новосибирск
Россия

кандидат биологических наук, заведующий Центром доклинических испытаний SPF-вивария Института цитологии и генетики Сибирского отделения РАН; научный сотрудник лаборатории ядерной и инновационной медицины Новосибирского национального исследовательского государственного университета


Конфликт интересов:

Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования



Ольга Игоревна Соловьева
Институт цитологии и генетики Сибирского отделения РАН, Новосибирский национальный исследовательский государственный университет, Новосибирск
Россия

младший научный сотрудник Центра доклинических испытаний SPF-вивария Института цитологии и генетики Сибирского отделения РАН; научный сотрудник лаборатории ядерной и инновационной медицины Новосибирского национального исследовательского государственного университета


Конфликт интересов:

Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования



Николай Владимирович Каныгин
Новосибирский национальный исследовательский государственный университет, Новосибирск
Россия

студент, лаборант лаборатории ядерной и инновационной медицины


Конфликт интересов:

Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования



Валентина Ильинична Капустина
Федеральный исследовательский центр фундаментальной и трансляционной медицины, Новосибирск
Россия

кандидат биологических наук, старший научный сотрудник лаборатории клинической морфологии важнейших заболеваний


Конфликт интересов:

Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования



Список литературы

1. Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer cell. 2002;1(3):269-277

2. Vitorino JD, Costa PM. After a Century of Research into Environmental Mutagens and Carcinogens, Where Do We Stand. Int J Environ Res Public Health. 2023;20(2):1040. https://doi.org/10.3390/ijerph20021040

3. Becher OJ, Holland EC, Sausville EA, Burger AM. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 2006;66(7):3355-3359

4. Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in Malignant Glioma: Standard of Care and Future Directions. J Clin Oncol. 2007;25(26):4127-4136. https//doi.org/10.1200/JCO.2007.11.8554.2007;25(26)

5. Jagtap S, Meganathan K, Wagh V, et al. Chemoprotective Mechanism of the Natural Compounds, Epigallocatechin- 3-O-Gallate, Quercetin and Curcumin against Cancer and Cardiovascular Diseases. Current Medicinal Chemistry. 2009;16(12):1451-1462

6. Sauerwein W. Neutron Capture Therapy. Principles and Applications. N-Y: Springer, 2012. – 553pp

7. Advances in Boron Neutron Capture Therapy, International atomic energy agency. Non-serial Publications. IAEA: Vienna, 2023. – 416 pp

8. Wang P, Zhen H, Jiang X, et al. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax. BMC Cancer. 2010;10:661

9. Kinashi Y, Okumura K, Kubota Y, et al. Dose-rate effect was observed in T98G glioma cells following BNCT. Appl Radiat Isot. 2014;88:81-85

10. Coderre JA, Makar MS, Micca PL, et al. Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol Biol Phys. 1993;27(5):1121-1129

11. Menichetti L, Gaetano L, Zampolli A. In vitro neutron irradiation of glioma and endothelial cultured cells. Appl Radiat Isot. 2009;67(7-8 Suppl):336-340

12. Byvaltsev VA, Zavyalov EL, Kanygin VV, et al. Cytopathic effects of boron neutron capture therapy on an accelerator source of epithermal neutrons for human glioblastoma cell culture. Siberian Journal of Oncology. 2019;18:4:34-42

13. Kanygin V, Razumov I, Zaboronok A, et al. Dose-dependent suppression of human glioblastoma xenograft growth by accelerator-based boron neutron capture therapy with simultaneous use of two boron-containing compounds. Biology. 2021;10:11

14. Krivoshapkin AL, Kanygin VV, Kasatova AI, et al. Evaluation of the effectiveness of boron neutron capture therapy on the heterotopic model of glioblastoma u87 in ummunodeficient SCID mice. Bulletin of Siberian Medicine. 2021;4:48-56

15. Zavjalov E, Zaboronok A, Kanygin V, et al. Accelerator-based boron neutron capture therapy for malignant glioma: a pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice. International Journal of Radiation Biology. 2020;96:7:868-878

16. Kanygin VV, Zav’yalov EL, Simonovich AE i dr. Bor-neytron-zakhvatnaya terapiya dlya chelovecheskoy glioblastomy v modelyakh opukholey in vivo. Sovremennye problemy nauki i obrazovaniya. 2019;1:19

17. Seo IH, Lee J, Na D, et al. The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea. Life (Basel). 2022;12(8):1264

18. Haselsberger K, Radner H, Gössler W. Subcellular boron-10 localization in glioblastoma for boron neutron capture therapy with Na2B12H11SH. J Neurosurg. 1994;81:741-744. https://doi.org//10.3171/jns.1994.81.5.0741

19. Clendenon NR, Barth RF, Gordon WA et al. Boron neutron capture therapy of a rat glioma. Neurosurgery. 1990;26:47-55

20. Wittig A, Huiskamp R, Moss RL, et al. Biodistribution of 10 B for Boron Neutron Capture Therapy (BNCT) in a Mouse Model after Injection of Sodium Mercaptoundecahydro-closo-dodecaborate and L-para-Boronophenylalanine. Radiat Res. 2009;172:493-499

21. Wittig A, Stecher-Rasmussen F, Hilger RA, et al. Sodium mercaptoundecahydro-closo-dodecaborate (BSH), a boron carrier that merits more attention. Appl Radiat Isot. 2011;69(12):1760-1764. https://doi.org/10.1016/j.apradiso.2011.02.046

22. Gabel D, Holstein H, Larsson B et al. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds. Cancer Res. 1987;47:5451-5454

23. Joel DD, Slatkin DN, Micca PL, et al. Uptake of boron into human gliomas of athymic mice and into syngeneic cerebral gliomas of rats after intra carotid infusion of sulfhydryl boranes. In: Fairchild RG, Bond VP, Woodhead AD (eds) Clinical aspects of neutron capture therapy. Plenum Press: New York, 1989. – P. 325-332

24. Joel DD, Slatkin DN, Micca PL, et al. Uptake of boron into human gliomas of athymic mice and into syngeneic cerebral gliomas of rats after intracarotid infusion of sulfhydryl boranes. Basic Life Sci. 1989;50:325-332

25. Joel D, Slatkin D, Fairchild R, et al. Pharmacokinetics and tissue distribution of the TI – sulfhydryl boranes (monomer and dimer) in glioma-bearing rats. Strahlenther Onkol. 1989;165:167-170

26. Joel D, Slatkin D, Coderre J. Uptake of 1OB in gliosarcoma: following the injection of glutathione monoethyl ester and sulfhydryl borane. In: Soloway AH, Barth RF, Carpenter DE (eds). Advances in neutron capture therapy. Plenum Press: New York, 1993. – P. 501-504

27. Wittig A, Sauerwein WA, Coderre JA. Mechanisms of transport of p-boronophenylalanine through the cell membrane in vitro. Radiat Res. 2000;153:173-180

28. Joel DD, Coderre JA, Micca PL, Nawrocky MM. Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy. J Neurooncol. 1999;41:213-221

29. Barth RF, Yang W, Rotaru JH et al. Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood-brain barrier disruption. Cancer Res. 1997;57:1129-1136

30. Coderre JA, Joel DD, Micca PL et al. Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine. Radiat Res. 1992;129:290-296

31. Joel DD, Fairchild RG, Laissue JA et al. Boron neutron capture therapy of intracerebral rat gliosarcomas. Proc Natl Acad Sci USA. 1990;87:9808-9812

32. Coderre JA, Button TM, Micca PL et al. Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Radiat Oncol Biol Phys. 1994;30:643-652

33. Saris SC, Solares GR, Wazer DE et al. Boron neutron capture therapy for murine malignant gliomas. Cancer Res. 1992;52:4672-4677

34. Matalka KZ, Bailey MQ, Barth RF et al. Boron neutron capture therapy of intracerebral melanoma using boronophenylalanine as a capture agent. Cancer Res. 1993;53:3308–3313


Дополнительные файлы

Локальное облучение эпитепловыми нейтронами привитых подкожных ксенографтов глиобластомы человека в сочетании с введением боркаптата и борфенилаланина вызывает у экспериментальных мышей синергический терапевтический эффект

Рецензия

Для цитирования:


Каныгин В.В., Колдышева Е.В., Завьялов Е.Л., Соловьева О.И., Каныгин Н.В., Капустина В.И. МОРФОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОДКОЖНЫХ КСЕНОГРАФТОВ ГЛИОБЛАСТОМЫ ЧЕЛОВЕКА U-87 MG ПОСЛЕ ЛОКАЛЬНОГО ОБЛУЧЕНИЯ ЭПИТЕПЛОВЫМИ НЕЙТРОНАМИ. Морфологические ведомости. 2024;32(1):ID-856. https://doi.org/10.20340/mv-mn.2024.32(1).856

For citation:


Kanygin V.V., Koldysheva E.V., Zav'yalov E.L., Solov'yova O.I., Kanygin N.V., Kapustina V.I. MORPHOLOGICAL STUDY OF HUMAN U-87 MG GLIOBLASTOMA SUBCUTANEOUS XENOGRAFTS AFTER LOCAL IRRADIATION BY EPITHERMAL NEUTRONS. Morphological newsletter. 2024;32(1):ID-856. (In Russ.) https://doi.org/10.20340/mv-mn.2024.32(1).856

Просмотров: 130


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)