RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

THE RATIO OF THE THICKNESS OF MYELIN SHEATH OF THE AXON TO ITS DIAMETER IN NERVOUS FIBERS OF THE MUSCULOCUTANEOUS NERVE IN THE PRENATAL ONTOGENESIS

https://doi.org/10.20340/mv-mn.2018.26(3):37-40

Abstract

Performing an insulator function, the myelin sheath covers the axial cylinder, which is involved in conducting a nerve impulse. In the course of some research, great attention was paid to the relationship between the of the thickness of myelin sheath of the axon to its diameter and were the statements of contradictory opinions. The purpose of the study is evaluation of the ratio of the thickness of myelin sheath of the axon to its diameter in nervous fibers of the musculocutaneous nerve in the prenatal ontogenesis. The pieces of the musculocutaneous nerve in 6-9 month old fruits a length of 63 mm and a length of 10 mm were got. The principles of the structure of myelinated fiber for all stages of prenatal ontogenesis are the same and in a full-term newborn the growth of common myelinated fiber occurs due to thickening of the myelin sheath and the growth of the axial cylinder. Between of the thickness of the myelin sheath and the diameter of the axial cylinder there is a straight line correlative relationship. In some cases, there are discrepancies in the general pattern: fibers with a thin myelin sheath have axons with large diameters or vice versa. This is a characteristic feature of the fibers in the earlier stages of the process of myelination and associated with preservation of cytoplasmic structures between the layers of lipoprotein plates.

About the Author

G. A. Guseinova
Азербайджанский медицинский университет
Russian Federation


References

1. Komissarchik Ya.Yu. Elektronnomikroskopicheskoe issledovanie rannih stadiy mielinizatsii sedalischnogo nerva kurinogo embriona// Arkhiv anatomii.- 1962.- T. XIII.- S. 69-77.

2. Stovichek G.V., Babanova I.G. Voprosyi morfogeneza vistseralnykh nervov/ V kn.: Problemy mieloarkhitektoniki vistseralnykh nervov.- Yaroslavl, 1978.- Vyip. 3.- S. 3-34.

3. Sotnikov O.S. Dinamika struktury zhivogo neyrona.- L.: Nauka, 1985.

4. Abdullaev M.S., Guseynova G.A. Razlichiya v ultrastrukture mielinovoy obolochki nervnykh volokon u ploda cheloveka/ V kn.: Materialy ob'edinennogo II s'ezda anatomov, gistologov, embriologov.- Minsk, 1991.- S. 3-4.

5. Hedley-Whyte ET, Meuser CS. The effect of undernutrition on myelination of rat sciatic nerve. J Lab Invest. 1971;24:156-161.

6. Nurgali K, Stebbing MJ, Furness JB. Corellation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comparative Neurology. 2014;468:112-124.

7. Geren BB. The formation from the Swan cell surface of myelin in the peripheral nerves of chick embryos. J Exp cell Res. 1955;7:558-562.

8. Peters A, Muir AR. The relationship between axons and Schwann cells during development of peripheral nerves in the rat. J Exp Physiol Cogn Med Sci. 1959;44(1):117-130.

9. Allt G. Ultrastructural features of the immature peripheral nerve. J Anat. 1969;105:283-293.

10. Webster H de F. The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J Cell Biology. 1971;48:348-367.

11. Hahn AF, Chang Y, Webster H de F. Development of myelinated nerve fibers in the sixth cranial nerve of the rat: A quantitative electron microscope study. J Comparative Neurology. 1987;260:491-500.

12. Friede RL, Samorajski T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J Comparative Neurology 1967;130:223-31.

13. Gamble HI, Breathnach AS. An electron microscopic study of human fetal peripheral nerves. J Anat. 1965;99:573-584.

14. Dunn IG. Developing in human peripheral nerve J Scot Med. 1970;150(3):108-117.

15. Bruska M, Woźniak W. Ultrastructural studies on differentiation of nerve cells in the human embryonic and fetal inferior ganglion of the vagus. Z Anatomishe Anzeiger. 1980;148(1):30-41.

16. Woźniak W, O'Rahilly R, Bruska M. Myelination of the human fetal phrenic nerve. J Act Anat (Basel). 1982;112(4):281-296.

17. Fernandes HL, Huneeus FG, Davison PF. Studies on the mechanism of axoplasmic transport in the crayfish cord. J Neurobiology. 1970;1:395-409.

18. Friede RL, Bischhausen R. How do axons control myelin formation? The model of 6-aminonicotinamide neuropathy. J Neurol Sciences. 1978;35(2-3):341-353.

19. Michailov GV, Sereda MW, Brinkmann BG et al. Axonal neuregulin-1 regulates myelin sheaths thickness. J Science. 2004:700- 703.

20. Kaplan BG. Ekspress-raschet osnovnykh matematiko-statisticheskikh pokazateley.- Baku: Maarif, 1970.

21. Petri A., Sebin K. Naglyadnaya statistika v meditsine.- M.: GEOTAR-MED, 2003.- 144s.


Review

For citations:


Guseinova G.A. THE RATIO OF THE THICKNESS OF MYELIN SHEATH OF THE AXON TO ITS DIAMETER IN NERVOUS FIBERS OF THE MUSCULOCUTANEOUS NERVE IN THE PRENATAL ONTOGENESIS. Morphological newsletter. 2018;26(3):37-40. (In Russ.) https://doi.org/10.20340/mv-mn.2018.26(3):37-40

Views: 301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)