RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

The comparative efficiency analysis of simple and multicomponent alkaline decellularization on the example of purification of the fibrous extracellular matrix of the derma

https://doi.org/10.20340/mv-mn.2016.24(4):36-45

Abstract

Alkaline decellularization represents one of the most common methods for obtaining acellular matrix (ECM). However, there is no published data concerning the effectiveness of different alkaline ECM decellularization protocols. In the present study comparative efficiency analysis of the simple decellularization protocol by sodium hydroxide solution and complex protocol by several different solutions based on sodium hydroxide and sodium sulfate was carried out. The biochemical, morphological, and thermo-mechanical characteristics of the acellular fibrous extracellular matrix of the bovine (Bos taurus taurus) dermis were evaluated. It was shown that both protocols effectively remove cellular components from the ECM. However, applying complex protocol led to the reduction in the amount of residual dsDNA in the ECM. The results of morphological and thermomechanical studies suggest that the use of a complex protocol in comparison with a simple treatment with sodium hydroxide leads to decrease in the ECM fiber network disorganization, retaining structure of collagen fibers, and also to an increase in the elasticity of the material. Thus, the use of alkaline treatment with solutions containing sulfate better preserve the native structure of the decellularized ECM from bovine dermis. According to the obtained data it can be concluded that the use of the complex protocol for the alkaline decellularization of bovine dermis is more preferable.

About the Authors

N. V. Kalmykova
ФНИЦЭМ им. Н.Ф.Гамалеи
Russian Federation


I. A. Demyanenko
ФНИЦЭМ им. Н.Ф.Гамалеи
Russian Federation


N. V. Shevlyagina
ФНИЦЭМ им. Н.Ф.Гамалеи
Russian Federation


S. G. Andreevskaya
ФНИЦЭМ им. Н.Ф.Гамалеи
Russian Federation


A. P. Suslov
ФНИЦЭМ им. Н.Ф.Гамалеи
Russian Federation


References

1. Crapo P.M., Gilbert T.W., BadylakS.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233-3243. DOI: 10.1016/j.biomaterials.2011.01.057.

2. Badylak S.F., Taylor D., Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011; 13:27-53. DOI: 10.1146/annurev-bioeng-071910-124743.

3. Badylak, S.F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004; 12:367-377. DOI: 10.1016/j.trim.2003.12.016.

4. Goissis G., da Silva Maginador S.V., da Conceiҫão Amaro Martins V. Biomimetic mineralization of charged collagen matrices: in vitro and in vivo study. Artifical organs. 2003; 27 (5): 437-443.

5. Reing J.E., Brown B.N., Daly K.A., Freund J.M., Gilbert T.W., Hsiong S.X., Huber A., Kullas K.E., Tottey S., Wolf M.T., Badylak S.F. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010; 31(33): 8626-8633. DOI: 10.1016/j.biomaterials.2010.07.083.

6. Sheridan W.S., Duffy G.P., Murphy B.P. Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering. J Mech BehavBiomed Mater. 2012; 8:58-70. DOI: 10.1016/j. jmbbm.2011.12.003.

7. Mendoza-Novelo B., Avila E.E., Cauich-Rodriguez J.V., Jorge-Herrero E., Rojo F.J., Guinea G.V., Mata-Mata J.L. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater. 2011; 7: 1241-1248. DOI: 10.1016/j.actbio.2010.11.017.

8. Tsuchiya T., Balestrini J.L., Mendez J., Calle E.A., Zhao L., Niklason L.E. Influence of pH on extracellular matrix preservation during lung decellularization. Tissue Eng Part C Methods. 2014; 20(12): 1028-1036. DOI: 10.1089/ten.TEC.2013.0492.

9. Keane T.J., Swinehart I., Badylak S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015; 16(84): 25-34. DOI: 10.1016/j.ymeth.2015.03.005.

10. Goissis G., Piccirili L., Goes J.C., Plepis A., Das-Gupta D.K. Anionic Collagen: Polymer Composites with Improved Dielectric and Rheological Properties. Artif organs. 1998; 22(3): 203-209.

11. Bet M.R., Goissis G., Lacerda C. Characterization of polyanionic collagen prepared by selective hydrolysis of asparagine and glutamine carboxyamide side chains. Biomacromolecules. 2001; 2(4): 1074-1079.

12. Patent № 2353397 RF. Biorassasyvaemaja kollagenovaja matrica, sposob ee poluchenija i primenenija. Safojan A.A., Nesterenko S.V., Nesterenko V.G., Alekseeva N.Ju.

13. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.1970; 227: 680-68.

14. Gilbert T.W., Freund J.M., Badylak S.F. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009; 152(1): 135-139. DOI: 10.1016/j. jss.2008.02.013.

15. Liang H.C., Chang Y., Hsu C.K., Lee M.H., Sung H.W. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials. 2004; 25(17): 3541-3552. DOI: 10.1016/j.biomaterials.2003.09.109.

16. Burger J.W., Halm J.A., Wijsmuller A.R., ten Raa S., Jeekel J. Evaluation of new prosthetic meshes for ventral hernia repair. Surg endosc. 2006; 20(8): 1320-1325. DOI: 10.1007/s00464-005-0706-4.

17. Gaertner W.B., Bonsack M.E., Delaney J.P. Experimental evaluation of four biologic prostheses for ventral hernia repair. Journal of gastrointestinal surgery. 2007; 11(10): 1275-1285. DOI: 10.1007/ S11605-007-0242-8.

18. Zhang X., Deng Z., Wang H., Yang Z., Guo W. Expansion and delivery of human fibroblasts on micronized acellular dermal matrix for skin regeneration. Biomaterials. 2009; 30(14): 2666-2674. DOI: 10.1016/j.biomaterials.2009.01.018.

19. Cornwell K.G., Landsman A., James K.S. Extracellular matrix biomaterials for soft tissue repair. Clinics in podiatric medicine and surgery. 2009; 26(4): 507-523. DOI: 10.1016/j.cpm.2009.08.001.

20. Keane T.J., Londodo R., Turner N.J., Badylak S.F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012; 33(6): 1771-1781. DOI: 10.1016/j. biomaterials.2011.10.054.

21. Cox B., Emili A. Tissue subcellular fractionation for use in mass-spectrometry-based proteomics. Nat protoc. 2006; 1(4): 1872-1878. DOI: 10.1038/ nprot.2006.273.

22. Deyl Z., Miksil I. Advanced separation methods for collagen parent a-chains, their polymers and fragments. J Chromatogr B. 2000; 739:3-31.

23. Ushiki T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol. 2002; 65(2): 109-126. DOI: 10.1679/aohc.65.109

24. Stevens M.M., George J.H. Exploring and Engineering the cell surface interface. Science. 2005

25. Stevens M.M., George J.H. Exploring and Engineering the cell surface interface. Science. 2005; 310(5751): 1135-1138. DOI: 10.1126/science.1106587

26. O’Brien F.J., Harley B.A., Yannas I.V., Gibson L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005; 26(4): 433-441. DOI: 10.1016/j.biomaterials.2004.02.052


Review

For citations:


Kalmykova N.V., Demyanenko I.A., Shevlyagina N.V., Andreevskaya S.G., Suslov A.P. The comparative efficiency analysis of simple and multicomponent alkaline decellularization on the example of purification of the fibrous extracellular matrix of the derma. Morphological newsletter. 2016;24(4):36-45. (In Russ.) https://doi.org/10.20340/mv-mn.2016.24(4):36-45

Views: 301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)