RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

THE EARLY CELLULAR REACTION OF EYE TISSUES TO THE IMPLANTATION OF BIORESORBABLE DRAINAGES SATURATED BY IMMUNOSUPPRESSANTS WITH A SELECTIVE MECHANISM OF ACTION

https://doi.org/10.20340/mv-mn.2020.28(3):15-20

Abstract

Prolonged use of immunosuppressants with a selective mechanism of action is a promising strategy in the prevention of postoperative scarring in glaucoma surgery. In order to assess the cellular response of eye tissues to the implantation of bioresorbable drains saturated with cyclosporin A or everolimus, a filter-type hypotensive operation with implantation of polylactide-based drains was simulated in 12 rabbits. Drainages implanted in rabbits of the two experimental groups under study were pre-saturated with either cyclosporin A or everolimus. The control group consisted of animals that were implanted with drains not saturated with any drugs. On the 7th day after the operation, the animals were taken out of the experiment, the eyeballs were enucleated, and histological preparations stained with hematoxylin and eosin, as well as hematoxylin and Picrosirius-red were prepared. Using a score on a scale from 0 to 5, the cellular composition within the drainage material, the intensity of collagen synthesis in the drainage, the thickness of the capsule around the drainage, and the number of blood vessels were analyzed. In comparison with the control group, the study groups showed a significantly lower amount of mononuclear cells, fibroblasts and giant cells of foreign bodies, as well as a lower thickness of the capsules surrounding the drainage, up to their complete absence. In addition, the intensity of collagen synthesis inside the drainage material of the studied groups was significantly lower. The drains of the everolimus group were characterized by an extremely low density of viable cellular elements inside the implanted material and a complete absence of collagen. At the same time, no toxic effect of the substance on the surrounding tissues was found. Thus, the saturation of bioresorbable drainages based on polylactide with cyclosporin A and everolimus contributed to a decrease in the intensity of the formation of connective tissue elements both inside and around the drainage in the early postoperative period.

About the Authors

Viktoria N. Germanova
Samara State Medical University, Eroshevsky Samara Regional Clinical Ophthalmological Hospital, Samara
Russian Federation

Postgraduate student of the Department of Ophthalmology of the Samara State Medical University, ophthalmologist of the ophthalmological department № 3 of the Eroshevsky Samara Regional Clinical Ophthalmological Hospital


Competing Interests: Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования


Natal'ya N. Sarbaeva
Medical University REAVIZ, Samara
Russian Federation

Candidate of Biological Sciences, Leading Researcher of the Laboratory of Problems of the Morphology of the Scientific Center of Preclinical Research


Competing Interests: Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования


Elena V. Karlova
Samara State Medical University, Eroshevsky Samara Regional Clinical Ophthalmological Hospital, Samara
Russian Federation

Doctor of Medical Sciences, Assistant of the Department of Ophthalmology of the Samara State Medical University, ophthalmologist of the ophthalmological department № 3 of the Eroshevsky Samara Regional Clinical Ophthalmological Hospital


Competing Interests: Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования


Larisa T. Volova
Samara State Medical University, Samara
Russian Federation

Doctor of Medical Sciences, Professor, Head of the Biotechnology Department of the Institute of Experimental Medicine and Biotechnology


Competing Interests: Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования


Irina F. Nefyodova
Samara State Medical University, Samara
Russian Federation

Head of the Laboratory of Experimental Morphology of the Institute of Experimental Medicine and Biotechnology


Competing Interests: Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования


Mariya V. Radaykina
Eroshevsky Samara Regional Clinical Ophthalmological Hospital, Samara
Russian Federation

ophthalmologist of the ophthalmological department № 3 of the Eroshevsky Samara Regional Clinical Ophthalmological Hospital


Competing Interests: Автор заявляет об отсутствии каких-либо конфликтов интересов при планировании, выполнении, финансировании и использовании результатов настоящего исследования


References

1. Masoumpour M, Nowroozzadeh M, Razeghinejad M. Current and Future Techniques in Wound Healing Modulation after Glaucoma Filtering Surgeries. Open Ophthalmol J. 2016;10:68-85.

2. DOI: 10.2174/1874364101610010068.

3. Zada M, Pattamatta U, White A. Modulation of Fibroblasts in Conjunctival Wound Healing. Ophthalmology. 2018;125(2):179-192. DOI: 10.1016/j.ophtha.2017.08.028.

4. Petrov S. Modern methods of controlling wound healing after fistulizing glaucoma surgery. Anti-inflammatory drugs and new trends. Oftal’mologiya. 2017;14(2):99-105. DOI: 10.18008/1816-5095-2017-2-99-105.

5. Petrov S. Modern methods of controlling wound healing after fistulizing glaucoma surgery. Risk factors and antimetabolites. Oftal’mologiya. 2017;14(1):5-11. DOI: 10.18008/1816-5095-2017-1-5-11.

6. Holló G. Wound Healing and Glaucoma Surgery: Modulating the Scarring Process with Conventional Antimetabolites and New Molecules. Glaucoma Surgery. 2017:80-89. DOI: 10.1159/000458488.

7. Faulds D, Goa KL, Benfield P. Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs. 1993;45(6):953-1040.

8. Leonardi A, DeFranchis G, Fregona IA, Violato D, Plebani M, Secchi AG. Effects of Cyclosporin A on Human Conjunctival Fibroblasts. Arch Ophthalmol. 2001;119(10):1512–1517.

9. DOI: 10.1001/archopht.119.10.1512.

10. Viveiros, M.M.H., Kakizaki, F.Y., Hércules, L.A. et al. In vitro study of cyclosporine, A 0.05 % on primary and recurrent pterygium fibroblasts. Int Ophthalmol 36, 237–242 (2016).

11. DOI: 10.1007/s10792-015-0106-2.

12. Houghton P. Everolimus. Clinical Cancer Research. 2010;16(5):1368-1372. DOI: 10.1158/1078-0432.ccr-09-1314.

13. Chatterjee A, Mukhopadhyay S, Tung K, Patel D, Foster D. Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways. Cancer Lett. 2015;360(2):134-140.

14. DOI: 10.1016/j.canlet.2015.01.043.

15. Germanova VN, Karlova EV, Korigodskiy AR. Enrichment of a biodegradable glaucoma drainage with cyclosporine A in prevention of postoperative scarring. Zdorov’e I obrazovanie v XXI veke. 2018;20(1):29-33. DOI: 10.26787/nydha-2226-7425-2018-20-1-29-33.


Review

For citations:


Germanova V.N., Sarbaeva N.N., Karlova E.V., Volova L.T., Nefyodova I.F., Radaykina M.V. THE EARLY CELLULAR REACTION OF EYE TISSUES TO THE IMPLANTATION OF BIORESORBABLE DRAINAGES SATURATED BY IMMUNOSUPPRESSANTS WITH A SELECTIVE MECHANISM OF ACTION. Morphological newsletter. 2020;28(3):15-20. (In Russ.) https://doi.org/10.20340/mv-mn.2020.28(3):15-20

Views: 455


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)