RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

GOLGI BLACK REACTION AND THE HISTORY OF THE STUDY OF LIVING AXONS

https://doi.org/10.20340/mv-mn.17(25).03.8-13

Abstract

In 1873, the famous Italian morphologist C. Golgi invented a unique technique for coloring the nervous tissue with which he received magnificent preparations that opened the world a microscopic picture of the brain and the peripheral nervous system. The technique, called the black reaction, was characterized by a surprisingly contrasting identification of a structure that neurohistologists called an axon or axial cylinder. The name of this structure lasted almost a century and a half, but suddenly the intravital microscopy revealed that the argentophilic techniques, including the black reaction, reveal not the axon, but only the sharply compressed, thinned structure of the axoplasmic cytoskeleton, which we call the axial line. As a result, the Ranvier intercept cone becomes invisible. It turns out that in the course of the argentophilic treatment of myelinic nerve fibers, the filamentous-tubular protein polymers of the axoplasm is aggregated, which leads to a decrease in the degree of their dispersity and aggregation. As a result, a tight, thin, elastic cord is formed. Around him, between him and the myelin sheath, unremembered in neurohistology the Mautner space is formed. Intravital microscopy thus, transforming static morphology into kinetic studies, is able to clarify the knowledge of the structure of the nervous system.

About the Authors

O. S. Sotnikov
Pavlov Institute of Physiology Russian Academy of Sciences
Russian Federation


T. N. Kokurina
Pavlov Institute of Physiology Russian Academy of Sciences
Russian Federation


G. I. Rybakova
Pavlov Institute of Physiology Russian Academy of Sciences
Russian Federation


References

1. Mazzarello P. Camillo Golgi's scientific biography, J. Hist. Neurosci. 1999; 8(2): 121-131. (Dalhousie Univerity, 2012).

2. Leeuwenhoek A. Observations in nervos, Operaomnia, 1719; 4: 348-380.

3. Nemilov A.V. Gistologicheskoe stroenie dorzal'nykh koreshkov i belogo veshchestva spinnogo mozga. Leningrad: Izdanie LGU, 1913, 315 s.

4. Maksimov A. Osnovy gistologii. Uchenie o tkanyakh. Leningrad: Gosudarstvennoe izdatel'stvo Leningrad, 1918, ch. 2, 341 s.

5. Lazzarini R.A., Griffin J.W., Lissaman H.L., Nave K-A., Miller R.H., Trapp B.D. Myelin biology and disorders, Amsterdam: Elsivier, Acaalomic press, 2004, 659 p.

6. Stöhr Ph. Jr. Nervensystem. I.Teil, Berlin: In Handbuch der mikr Anat, 1908.

7. Ramon y Cajal S. The neuron and the glial cell, Illinois, NY USA: Charles C Thomas. Publisher. Springfield, 1984, 355 p.

8. Mauthner L. Recherches sur la structure du systeme nerveux, Paris: Recueil des Travaux de la Societe Medicale Allemande, 1865, 22 p.

9. Ranv'e L. Tekhnicheskiy uchebnik gistologii. Sankt-Peterburg, 1876-1881.

10. Lantermann A.J. Bemerkungen über den feineren Bau der markhaltigen Nervenfasern, Centralblatt medic. Wass., 1874; 45: 706-709.

11. Schmidt H.D. On the construction of the dark or doublebor - dered nerve fibre, Monthly Micr. J., 1874, p. 11-225.

12. Shvann T. Mikroskopicheskie issledovaniya o sootvetstvii i strukture i roste zhivotnykh i rasteniy. Moskva-Leningrad, 1939.

13. de Renyi G.St. The structure of cells in tissue as revealed by microdissection, II. The physical properties of the living axis cylinder in the myelinated nerve fiber of the frog. J. Comp. Neurol., 1929, vol. 47, p. 405-425.

14. von Kuppfer A. Über den «Achsencylinder» markhaltiger Nervenfasern. Sitz.-Ber. der math.-phys. Kl. d. k. bayer. Akad. d. Wissensch., H. 3, 1887.

15. Neumann E. Nervenmark - und Achsencylindertropfen, Virchow's Arch., 1898, Bd. 152.

16. Ramon y Cajal S. Degeneration Regeneration of the Nervous System, NY, USA: Hafner Publishing Co, 1959, 396 p.

17. Nemechek S., Byygar I., Vol'ff I., Vysotskaya F., Lodin Z. Vvedenie v neyrobiologiyu. Praga: Avicenum, 1978, 413 c.

18. Sotnikov O.S. Funktsional'naya morfologiya zhivogo myakotnogo volokna. Leningrad: Nauka, 1976, 100 s.

19. Remak R. Observationes Anatomicae et Microscopicae de Berolini, Systematis Nervosi Structura, 1838, p. 1-41.

20. Babukhin A.I. Elektricheskie organy u ryb. Moskva: ZAO «Retinoidy», 2007, 87 s.

21. Kirkcaldie M.T., Collins J.M. The axon as a physical strukture in health and acute trauma. J. Chem Neuroanat. 2016; 76(Pt. A): 9-18. doi: 10.1016/j.jchemneu.2016.05.006.

22. Sotnikov O.S. Properties live axoplasm, Single Cell Biology, 2016, p. 3-51.

23. Saifetiarova J., Tayior A.M., Bhat M.A. Early and late loss of the cytoskeletal scaffolding protein, ankyrin G reveals its role in maturation and maintenance of nodes of Ranvier in myelinated axons, J. Neurosci., 2017; 37(10): 2524-2538. doi: 10.1523/JNEUROSCI.2661-16.2017.

24. Taylor A.M., Saifetiarova J., Bhat M.A. Postnatal loss of neuronal and glial neurofascins differentially affects node of Ranvier maintenance and myelinated axon funcion, Front Cell Neurosci., 2017; 11: 1-18. doi: 10.3389/fncel.2017.00011.

25. Ugrenovic S., Jovanovic I., Vasovic L., Kundalic B., Cukuranovic R., Stefanovic V. Morphometric analysis of the diameter and g-ratio of the myelinated nerve fibers of the human sciatic nerve during the aging process, Anat. Sci. Int., 2016; 91(3): 238-45. doi: 10.1007/s12565-015-0287-9.

26. Zaprianova E., Sotnikov O.S., Deleva D. Early neuronal damage in multiple sclerosis, III Nat. Congr. Bulgar. Soc. Neurosci. Sofia: Bulgar, 2005: 40-41.


Review

For citations:


Sotnikov O.S., Kokurina T.N., Rybakova G.I. GOLGI BLACK REACTION AND THE HISTORY OF THE STUDY OF LIVING AXONS. Morphological newsletter. 2017;25(3):8-13. (In Russ.) https://doi.org/10.20340/mv-mn.17(25).03.8-13

Views: 390


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)