RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

MECHANISMS OF THE KEEPING AND CHANGE OF FORMS AND SIZES OF THE CELL NUCLEI (REVIEW)

https://doi.org/10.20340/mv-mn.2022.30(3).670

Abstract

The size and shape of the cell nucleus are the frequently used parameters in the studies of Russian and foreign-states authors, not only as necessary for calculating the nuclear-cytoplasmic ratio of a cell in ontogenesis, differentiation, and pathological processes, but also having values as such. However, in discussions, two extreme points of view are expressed on the value of information about the shape and, especially, about the size of the nucleus. According to the first point of view, the morphometry of the size and shape of the cell nucleus without measuring the cytoplasm with the subsequent calculation of the nuclear-cytoplasmic ratio does not make any sense, and the data obtained do not carry significant information. Proponents of the second point of view consider the cell nucleus as a labile and significant indicator of the morphological and functional state of the cell, the size and shape of which change during normal aging, pathological conditions, proliferation, gene expression, and protein synthesis. In this regard, a meta-analysis of modern scientific literature devoted to the study of the mechanisms of maintaining and changing the size and shape of the cell nucleus was carried out. The data obtained were subjected to an analytical study in order to formulate and explain the structures, factors and mechanisms of maintenance, changes in the size, shape of the cell nucleus. Based on the analysis of data from Russian and foreign-states sources, it can be confidently stated that the amount of DNA in the nucleus is not the only factor that determines its size and shape, but also the structure and modification of chromatin can affect nuclear morphology. It can be considered proven that the leading structures of the cell that determine the size and shape of the cell nucleus are the cytoskeleton, the complex of nuclear pores, the nuclear lamina, the endoplasmic reticulum, and the factors are nuclear-cytoplasmic exchange and osmolarity. Further study of the structures and factors affecting the size and shape of the nucleus, establishing the relationship between its morphology and processes occurring at the tissue and cellular levels, promises to provide new approaches to the diagnosis, prevention and treatment of a number of diseases.

About the Author

David A. Areshidze
Academician Avtsyn Research Institute of Human Morphology, Moscow
Russian Federation

Candidate of Biological Sciences, Head of the Cell Pathology Department


Competing Interests:

The author declares that he have no conflicts of interest in the planning, implementation, financing and use of the results of this study



References

1. Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. DOI: 10.1073/pnas.0402943101

2. Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells. Nat Rev Cancer. 2004;4(9):677-687. DOI: 10.1038/nrc1430

3. Katta SS, Smoyer CJ, Jaspersen SL. Destination: inner nuclear membrane. Trends Cell Biol. 2014;24(4):221-9. DOI: 10.1016/j.tcb.2013.10.006

4. Veltri RW, Khan MA, Miller MC, et al. Ability to predict metastasis based on pathology findings and alterations in nuclear structure of normal-appearing and cancer peripheral zone epithelium in the prostate. Clin Cancer Res. 2004;10(10):3465-3473. DOI: 10.1158/1078-0432.CCR-03-0635

5. Smoyer CJ, Jaspersen SL. Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet. 2019;65(5):1099-1106. DOI: 10.1007/s00294-019-00971-1

6. Edens LJ, White KH, Jevtic P, et al. Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. 2013;23(4):151-159. DOI: 10.1016/j.tcb.2012.11.004

7. Köhler A, Hurt E. Gene regulation by nucleoporins and links to cancer. Mol Cell. 2010;38(1):6-15. DOI: 10.1016/j.molcel.2010.01.040

8. Simon DN, Rout MP. Cancer and the nuclear pore complex. Adv Exp Med Biol. 2014;773:285-307. DOI: 10.1007/978-1-4899-8032-8_13

9. Diehl BJ. Time-related changes in size of nuclei of pinealocytes in rats. Cell Tissue Res. 1981;218(2):427-438. DOI: 10.1007/BF00210355

10. Weber P, Kula-Eversole E, Pyza E. Circadian control of dendrite morphology in the visual system of Drosophila melanogaster. PLoS One. 2009;4(1):e4290. DOI: 10.1371/journal.pone.0004290

11. Hagenauer MH, Perryman JI, Lee TM, Carskadon MA. Adolescent changes in the homeostatic and circadian regulation of sleep. Dev Neurosci. 2009;31(4):276-284. DOI: 10.1159/000216538

12. Reinke H, Asher G. Liver size: Waning by day, Waxing by Night. Hepatol. 2018;67(1):441-443. DOI: 10.1002/hep.29506

13. Górska-Andrzejak J, Keller A, Raabe T, et al. Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochem Photobiol Sci. 2005;4(9):721-726. DOI: 10.1039/b417023g

14. Slesareva EV, Arav VI, Khayrullin RM, Slesarev SM. Sutochnaya struktura morfofunktsional'noy organizatsii endokrinnoy tkani semennikov pri narushenii epifizarnoy regulyatsii. Morfologicheskie vedomosti. 2009;(3-4):96-99. In Rusian

15. Trufakin VA, Shurlygina AV, Michurina SV. Limfoidnaya sistema-tsirkadiannaya vremennaya organizatsiya i desinhronoz. Sibirsky nauchny meditsinsky zhurnal. 2012;32(1);5-12. In Russian

16. Walters AD, Bommakanti A, Cohen-Fix O. Shaping the nucleus: factors and forces. J Cell Biochem. 2012;113(9):2813-21. DOI: 10.1002/jcb.24178

17. Webster MT, McCaffery JM, Cohen-Fix O. Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. J Cell Biol. 2010;13;191(6):1079-88. DOI: 10.1083/jcb.201006083.

18. Brandt A, Krohne G, Grosshans J. The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell. 2008;7(4):541-51. DOI: 10.1111/j.1474-9726.2008.00406.x

19. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312(5776):1059-63. DOI: 10.1126/science.1127168

20. Eriksson M, Brown WT, Gordon LB et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293-8. DOI: 10.1038/nature01629

21. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet. 2006;7(12):940-52. DOI: 10.1038/nrg1906.

22. Versaevel M, Grevesse T, Gabriele S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun. 2012;14;3:671. DOI: 10.1038/ncomms1668

23. Jain N, Iyer KV, Kumar A, Shivashankar GV. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci U S A. 2013;110(28):11349-54. DOI: 10.1073/pnas.1300801110

24. Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA. 2002;99(4):1972-7. DOI: 10.1073/pnas.032668799

25. Strukov AI, Serov VV. Patologicheskaya anatomiya. 5-e izd. Moskva: Lit-terra, 2020. 880s. In Russian

26. Kachi T, Banerji TK, Quay WB. Quantitative cytological analysis of functional changes in adrenomedullary chromaffin cells in normal, sham-operated, and pinealectomized rats in relation to time-of-day: II. Nuclear-cytoplasmic ratio, nuclear size, and pars granulosa of nucleolus. J Pineal Res. 1988;5(2):141-159. DOI: 10.1111/j.1600-079x.1988.tb00778.x

27. Cantwell H, Dey G. Nuclear size and shape control [published online ahead of print, 2021 Nov 11]. Semin Cell Dev Biol. 2021;S1084-9521(21)00276-7. DOI: 10.1016/j.semcdb.2021.10.013

28. Jevtić P, Levy DL. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis. Sci Rep. 2017;7(1):7908. DOI: 10.1038/s41598-017-08243-z

29. Neumann FR, Nurse P. Nuclear size control in fission yeast. J Cell Biol. 2007;179(4):593-600. DOI: 10.1083/jcb.200708054

30. Maeshima K, Iino H, Hihara S, et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol. 2010;17(9):1065-1071. DOI: 10.1038/nsmb.1878

31. Hara Y, Iwabuchi M, Ohsumi K, Kimura A. Intranuclear DNA density affects chromosome condensation in metazoans. Mol Biol Cell. 2013;24(15):2442-2453. DOI: 10.1091/mbc.E13-01-0043

32. Gundersen GG, Worman HJ. Nuclear positioning. Cell. 2013;152(6):1376-1389. DOI: 10.1016/j.cell.2013.02.031

33. Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol. 2015;427(3):695-706. DOI: 10.1016/j.jmb.2014.09.008

34. Dantas M, Lima JT, Ferreira JG. Nucleus-Cytoskeleton Crosstalk During Mitotic Entry. Front Cell Dev Biol. 2021;9:649899. DOI: 10.3389/fcell.2021.649899

35. Schlaitz AL, Thompson J, Wong CC, et al. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell. 2013;26(3):315-323. DOI: 10.1016/j.devcel.2013.06.016

36. Luxton GW, Gomes ER, Folker ES, et al. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 2010;329(5994):956-9. DOI: 10.1126/science.1189072.

37. Khatau SB, Hale CM, Stewart-Hutchinson PJ, et al. A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA. 2009;106(45):19017-22. DOI: 10.1073/pnas.0908686106

38. Gay O, Gilquin B, Nakamura F, et al. RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci USA. 2011;108(28):11464-9. DOI: 10.1073/pnas.1104211108

39. Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172(1):41-53. DOI: 10.1083/jcb.200509124

40. Chen B, Co C, Ho CC. Cell shape dependent regulation of nuclear morphology. Biomaterials. 2015;67:129-36. DOI: 10.1016/j.biomaterials.2015.07.017

41. Lüke Y, Zaim H, Karakesisoglou I, et al. Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci. 2008;121(11):1887-98. DOI: 10.1242/jcs.019075

42. Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol. 2015;427(3):695-706. DOI: 10.1016/j.jmb.2014.09.008

43. Xue JZ, Woo EM, Postow L, et al. Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell. 2013;27(1):47-59. DOI: 10.1016/j.devcel.2013.08.002

44. Doye V, Hurt E. From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol. 1997;9(3):401-411. DOI: 10.1016/s0955-0674(97)80014-2

45. Allen NP, Patel SS, Huang L, et al. Deciphering networks of protein interactions at the nuclear pore complex. Molecular & Cellular Proteomics. 2002;1(12):930-946. DOI: 10.1074/mcp.T200012-MCP200

46. Mészáros N, Cibulka J, Mendiburo MJ, et al. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev Cell. 2015;33(3):285-298. DOI: 10.1016/j.devcel.2015.02.017

47. Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. 2017;18(2):73-89. DOI: 10.1038/nrm.2016.147

48. Jevtić P, Edens LJ, Vuković LD, Levy DL. Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol. 2014;28:16-27. DOI: 10.1016/j.ceb.2014.01.003

49. Shen X, Yu L, Weir JW, Gorovsky MA. Linker histones are not essential and affect chromatin condensation in vivo. Cell. 1995;82(1):47-56. DOI: 10.1016/0092-8674(95)90051-9

50. Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12(5):222. DOI: 10.1186/gb-2011-12-5-222

51. Iwamoto M, Mori C, Kojidani T, et al. Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate tetrahymena. Curr Biol. 2009;19(10):843-847. DOI: 10.1016/j.cub.2009.03.055

52. Jevtić P, Edens LJ, Li X, et al. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem. 2015;290(46):27557-27571. DOI: 10.1074/jbc.M115.673798

53. Shumaker DK, Lopez-Soler RI, Adam SA, et al. Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and Emery-Dreifuss muscular dystrophy. Proc Natl Acad Sci USA. 2005;102(43):15494-15499. DOI: 10.1073/pnas.0507612102

54. Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22(7):832-853. DOI: 10.1101/gad.1652708

55. Gruenbaum Y, Margalit A, Goldman RD, et al. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6(1):21-31. DOI: 10.1038/nrm1550

56. Mukherjee RN, Chen P, Levy DL. Recent advances in understanding nuclear size and shape. Nucleus. 2016;7(2):167-186. DOI: 10.1080/19491034.2016.1162933

57. Stick R, Hausen P. Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell. 1985;41(1):191-200. DOI: 10.1016/0092-8674(85)90073-x

58. Lehner CF, Stick R, Eppenberger HM, Nigg EA. Differential expression of nuclear lamin proteins during chicken development. J Cell Biol. 1987;105(1):577-587. DOI: 10.1083/jcb.105.1.577

59. Röber RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development. 1989;105(2):365-378.

60. Paradisi M, McClintock D, Boguslavsky RL, et al. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress. BMC Cell Biol. 2005;6:27. DOI: 10.1186/1471-2121-6-27

61. Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA. 2005;102(36):12879-84. DOI: 10.1073/pnas.0506001102

62. Mallampalli MP, Huyer G, Bendale P, et al. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA. 2005;102(40):14416-21. DOI: 10.1073/pnas.0503712102

63. Kim S, Li Q, Dang CV, Lee LA. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA. 2000;97(21):11198-11202. DOI: 10.1073/pnas.200372597

64. Zatloukal K, Denk H, Spurej G, Hutter H. Modulation of protein composition of nuclear lamina. Reduction of lamins B1 and B2 in livers of griseofulvin-treated mice. Lab Invest. 1992;66(5):589-597

65. Marín MP, Tomas M, Esteban-Pretel G, et al. Chronic ethanol exposure induces alterations in the nucleocytoplasmic transport in growing astrocytes. J Neurochem. 2008;106(4):1914-1928. DOI: 10.1111/j.1471-4159.2008.05514.x

66. Jevtić P, Levy DL. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol. 2015;25(1):45-52. DOI: 10.1016/j.cub.2014.10.051

67. Golden A, Liu J, Cohen-Fix O. Inactivation of the C. elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J Cell Sci. 2009;122(Pt 12):1970-1978. DOI: 10.1242/jcs.044743

68. Campbell JL, Lorenz A, Witkin KL, et al. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol Biol Cell. 2006;17(4):1768-1778. DOI: 10.1091/mbc.e05-09-0839

69. Edens LJ, Levy DL. cPKC regulates interphase nuclear size during Xenopus development. J Cell Biol. 2014;206(4):473-483. DOI: 10.1083/jcb.201406004

70. Björling E, Lindskog C, Oksvold P, et al. A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics. 2008;7(5):825-844. DOI: 10.1074/mcp.M700411-MCP200

71. van de Velde HJ, Senden NH, Roskams TA, et al. NSP-encoded reticulons are neuroendocrine markers of a novel category in human lung cancer diagnosis. Cancer Res. 1994;54(17):4769-4776.

72. Senden N, Linnoila I, Timmer E, et al. Neuroendocrine-specific protein (NSP)-reticulons as independent markers for non-small cell lung cancer with neuroendocrine differentiation. An in vitro histochemical study. Histochem Cell Biol. 1997;108(2):155-165. DOI: 10.1007/s004180050157

73. Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells. 2019;8(3):231. Published 2019 Mar 11. DOI: 10.3390/cells8030231

74. Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell. 2020;31(13):1315-1323. DOI: 10.1091/mbc.E18-10-0636

75. Barger SR, Penfield L, Bahmanyar S. Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem Sci. 2022;47(1):52-65. DOI: 10.1016/j.tibs.2021.08.009

76. Romanauska A, Köhler A. The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell. 2018;174(3):700-715.e18. DOI: 10.1016/j.cell.2018.05.047

77. Kume K, Cantwell H, Neumann FR, et al. A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control. PLoS Genet. 2017;13(5):e1006767. DOI: 10.1371/journal.pgen.1006767

78. Ganguly A, Bhattacharjee C, Bhave M, et al. Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells. FEBS Lett. 2016;590(5):631-643. DOI: 10.1002/1873-3468.12077

79. Irianto J, Swift J, Martins RP, et al. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys J. 2013;104(4):759-769. DOI: 10.1016/j.bpj.2013.01.006

80. Guilak F, Tedrow JR, Burgkart R. Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun. 2000;269(3):781-786. DOI: 10.1006/bbrc.2000.2360

81. Finan JD, Guilak F. The effects of osmotic stress on the structure and function of the cell nucleus. J Cell Biochem. 2010;109(3):460-467. DOI: 10.1002/jcb.22437

82. Efremov AK, Hovan L, Yan J. Size of the cell nucleus and its effect on the chromatin structure in living cells. bioRxiv. 2021;2021.07.27.453925

83. Mukherjee RN, Chen P, Levy DL. Recent advances in understanding nuclear size and shape. Nucleus. 2016;7(2):167-186. DOI: 10.1080/19491034.2016.1162933

84. Dahl KN, Kahn SM, Wilson KL, Discher DE. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci. 2004;117(Pt 20):4779-4786. DOI: 10.1242/jcs.01357

85. Finan JD, Chalut KJ, Wax A, Guilak F. Nonlinear osmotic properties of the cell nucleus. Ann Biomed Eng. 2009;37(3):477-491. DOI: 10.1007/s10439-008-9618-5

86. Newport JW, Wilson KL, Dunphy WG. A lamin-independent pathway for nuclear envelope assembly. J Cell Biol. 1990;111(6 Pt 1):2247-2259. DOI: 10.1083/jcb.111.6.2247

87. Yang L, Guan T, Gerace L. Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J Cell Biol. 1997;139(5):1077-1087. DOI: 10.1083/jcb.139.5.1077

88. Meng H, Andresen K, van Noort J. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Res. 2015;43(7):3578-3590. DOI: 10.1093/nar/gkv215

89. Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117(13):7326-7337. DOI: 10.1073/pnas.1909546117

90. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312(5776):1059-1063. DOI: 10.1126/science.1127168

91. Singla A, Griggs NW, Kwan R, et al. Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci. 2013;126(Pt 14):3105-3112. DOI: 10.1242/jcs.123026/

92. Tashiro K, Satoh A, Utsumi T, et al. Absence of Nogo-B (reticulon 4B) facilitates hepatic stellate cell apoptosis and diminishes hepatic fibrosis in mice. Am J Pathol. 2013;182:786–95

93. Fujihira H, Masahara-Negishi Y, Akimoto Y, et al. Liver-specific deletion of Ngly1 causes abnormal nuclear morphology and lipid metabolism under food stress. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165588. DOI: 10.1016/j.bbadis.2019.165588)

94. Guixé-Muntet S, Ortega-Ribera M, Wang C, et al. Nuclear deformation mediates liver cell mechanosensing in cirrhosis. JHEP Rep. 2020;2(5):100145. DOI: 10.1016/j.jhepr.2020.100145


The author made a meta-analysis of about a hundred sources devoted to the study of the mechanisms of maintaining and changing the size and shape of the cell nucleus. It has been established that the leading structures of the cell that determine the size and shape of the cell nucleus are the cytoskeleton, the complex of nuclear pores, the nuclear membrane, the endoplasmic reticulum, and the factors are nuclear-cytoplasmic exchange and osmolarity

Review

For citations:


Areshidze D.A. MECHANISMS OF THE KEEPING AND CHANGE OF FORMS AND SIZES OF THE CELL NUCLEI (REVIEW). Morphological newsletter. 2022;30(3):73-80. (In Russ.) https://doi.org/10.20340/mv-mn.2022.30(3).670

Views: 338


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)