RUSSIAN NATIONAL SCIENTIFIC ANATOMICAL JOURNAL

Preview

Morphological newsletter

Advanced search

EFFECTS OF DIRECT AND INDIRECT DELIVERY OF THE VEGF GENE BY CORD BLOOD CELLS IN LIMB ISCHEMIA AREA IN RATS

https://doi.org/10.20340/mv-mn.2017(25).4.14-17

Abstract

The effects of delivery of recombinant human VEGF165 gene under conditions of direct and cell-mediated gene therapy were studied in the model of posterior limb ischemia. Immediately after the creation of the ischemia model, a solution with the VEGF gene (Ad-VEGF group) or the mononuclear blood cells of the human umbilical cord (PCC) mononuclear cells (group CCP + Ad-VEGF) transduced by the same gene was injected into the distal part of the gastrocnemius muscle. At day 14, an increase in the number of CD31- and CD34-immunopositive cells in the ischemic gastrocnemius muscle was shown in both groups of animals. The number of CD31- and CD34-immunopositive cells in the Ad-VEGF group increased by 23% and by 2 times, respectively, and by 4 and 5 times, respectively, in the CKP + Ad-VEGF group. At this time, the number of CD31-immunopositive cells in the CKP + Ad-VEGF group was greater by a factor of 3, and the CD34-immunopositive cells by a factor of 2 compared with the Ad-VEGF group. A significantly larger increase in the number of endothelial cells, when delivered to the ischemia region of the VEGF gene by PPC compared to direct injection of the gene into the same region, indicates a significantly higher efficiency of angiogenesis under conditions of cell-mediated gene therapy.

About the Authors

I. V. Samatoshenkov
Казанский государственный медицинский университет
Russian Federation


S. A. Andreev
Казанский государственный медицинский университет
Russian Federation


N. V. Boychuk
Казанский государственный медицинский университет
Russian Federation


References

1. Fowkes GR, Rudan D, Rudan I, Aboyans V. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis.The Lancet 2013;382:1329-1340. doi: 10.1016/S0140-6736(13)61249-0.

2. Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ. res. 2009;105:724-736. doi: 10.1161/CIRCRESAHA.109.200386.

3. Jazwa A, Tomczyk M, Taha HM, Hytonen E, Stoszko M, Zentilin L, Giacca M, Yla-Herttuala S, Emanueli C, Jozkowicz A, Dulak J. Arteriogenic therapy based on simultaneous delivery of VEGF-A and FGF4 genes improves the recovery from acute limb ischemia. Vascular Cell 2013;5:13. doi: 10.1186/2045-824X-5-13.

4. Sanada F, Taniyama Y, Azuma J, Yuka I, Kanbara Y, Iwabayashi M, Rakugi H, Morishita R. Therapeutic Angiogenesis by Gene Therapy for Critical Limb Ischemia: Choice of Biological Agent. Immunol Endocr Metab Agents Med Chem. 2014;14(1):32-39.

5. Armstrong L, Lako M, Buckley N, Lappin TR, Murphy MJ, Nolta JA, Pittenger M, Stojkovic M. Our top 10 developments in stem cell biology over the last 30 years. Stem Cells 2012;30(1):2-9. doi: 10.1002Jstem.1007.

6. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. Thromb.Haemost. 2010;103:696-709.doi: 10.1160/TH09-10-0688.

7. Islamov RR, Rizvanov AA, Mukhamedyarov MA, Salafutdinov II, Garanina EE, Fedotova VY, Solovyeva VV, Mukhamedshina YO, Safiullov ZZ, Izmailov AA, Guseva DS, Zefirov AL, Kiyasov AP, Palotas A. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Curr Gene Ther. 2015;15(3):266-276.

8. Xie N, Li Z, Adesanya TM, Guo W, Liu Y, Fu M, Kilic A, Tan T, Zhu H, Xie X. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J cellmol med. 2016 Jan;20(1):29-37. doi: 10.1111/jcmm.12489.

9. Zhe L, Guo LZ, Kim T, Han S, Kim S. Angio-vasculogenic properties of endothelial-induced mesenchymal stem cells derived from human adipose tissue. Circulation Journal 2016;80:998-W07.doi: 10.1253/circj.CJ-15-1169.

10. Shevchenko EK, Talickij KA, Parfenova EV. Perspektivy povyshenijaj effektivnosti gennoj i kletochnoj terapii serdechno-sosudistyh zabolevanij: geneticheski modificirovannye kletki. Kletochnaja transplantologija i tkanevaja inzhenerija. 2010;5:215-218.

11. Islamov RR, Rizvanov AA, Mukhamedyarov MA, Salafutdinov II, Garanina EE, Fedotova VY, Solovyeva VV, Mukhamedshina YO, Safiullov ZZ, Izmailov AA, Guseva DS, Zefirov AL, Kiyasov AP, Palotas A. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Curr Gene Ther. 2015;15(3):266-276.

12. Voronov DA. Ispol'zovanie gennyh induktorov neoangiogeneza v kompleksnom lechenii pacientov s hronicheskoj ishemiej nizhnih konechnostej: fundamental'nye aspekty i klinicheskie rezul'taty. Kardiologija i serdechno-sosudistaja hirurgija. 2009;5:44-48.


Review

For citations:


Samatoshenkov I.V., Andreev S.A., Boychuk N.V. EFFECTS OF DIRECT AND INDIRECT DELIVERY OF THE VEGF GENE BY CORD BLOOD CELLS IN LIMB ISCHEMIA AREA IN RATS. Morphological newsletter. 2017;25(4):14-17. (In Russ.) https://doi.org/10.20340/mv-mn.2017(25).4.14-17

Views: 433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-3171 (Print)
ISSN 2686-8741 (Online)